Isolation of two new stereochemical variants of streptophenazine by cocultivation of Streptomyces NIIST-D31, Streptomyces NIIST-D47, and Streptomyces NIIST-D63 strains in 3C2 combinations

Cocultivation of combinations of Streptomyces species isolated from the same soil was explored to isolate novel secondary metabolites. Recently, we reported the isolation of a novel vicinal diepoxide of alloaureothin along with three carboxamides, 4-aminobenzoic acid, and 1,6-dimethoxyphenazine from...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of antibiotics 2023-10, Vol.76 (10), p.567-578
Hauptverfasser: Induja, D. K., Jesmina, A. R. S., Joseph, Manu M., Shamjith, Shanmughan, Ingaladal, Nagaraja, Maiti, Kaustabh Kumar, Kumar, B. S. Dileep, Lankalapalli, Ravi S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Cocultivation of combinations of Streptomyces species isolated from the same soil was explored to isolate novel secondary metabolites. Recently, we reported the isolation of a novel vicinal diepoxide of alloaureothin along with three carboxamides, 4-aminobenzoic acid, and 1,6-dimethoxyphenazine from the individual culture of Streptomyces luteireticuli NIIST-D31. Herein, cocultivation of NIIST-D31 with Streptomyces luteoverticillatus NIIST-D47 afforded two new stereochemical variants of streptophenazine (S1 and S2), and 1- N -methylalbonoursin, where the individual culture of NIIST-D47 primarily produced carbazomycins A, D, and E. The new streptophenazines and 1- N -methylalbonoursin were also observed during cocultivation of NIIST-D31 with Streptomyces thioluteus NIIST-D63, where the individual culture of NIIST-D63 strain afforded for the first time 2,2′-bipyridines (caerulomycinamide and dipyrimicin B), picolinamide, 2,3-dimethoxybenzamide, 2-hydroxy-3-methoxybenzamide, and 6-amino-2-pyridone along with known natural products aureothin and 1,6-dimethoxyphenazine. Finally, cocultivation of NIIST-D47 and NIIST-D63 strains produced carbazomycins B and C, alloaureothin, cyclo-(Leu-Pro), investiamide, and 4-aminobenzoic acid. Some of the compounds observed in the individual cultures were also produced in cocultivations. Improvement in the yield of secondary metabolites during cocultivation compared to individual culturing is well-known, which is noted here for vicinal diepoxide of alloaureothin. The production of new streptophenazines by cocultivation combinations with NIIST-D31 suggests that NIIST-D47 and NIIST-D63 may function as inducers in activating cryptic secondary metabolite-biosynthetic gene clusters. Cytotoxicity of the new streptophenazines in cancerous (MCF7 and MDA-MB-231) or non-cancerous (WI-38) cells were tested, however, they exhibited no significant activity.
ISSN:0021-8820
1881-1469
1881-1469
DOI:10.1038/s41429-023-00638-7