Design and experimental testing of a robust multivariable controller on a tokamak
Describes the design and the experimental validation of a multivariable digital controller for a Tokamak, the Tokamak a configuration variable (TCV). The design of the controller is based on a linearized model of the plasma confined in the Tokamak. The plant is multiple-input-multiple-output (MIMO)...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on control systems technology 2002-09, Vol.10 (5), p.646-653 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Describes the design and the experimental validation of a multivariable digital controller for a Tokamak, the Tokamak a configuration variable (TCV). The design of the controller is based on a linearized model of the plasma confined in the Tokamak. The plant is multiple-input-multiple-output (MIMO) and the various outputs are strongly coupled. Moreover the plant is open-loop unstable. The scope of the controller is to stabilize the plasma and to guarantee some closed-loop performance in terms of decoupling among the plant outputs. The proposed controller is composed of two nested loops: one is devoted to the vertical stabilization, the other, designed using the /spl Hscr//sub /spl infin// technique, guarantees the control of the plasma current and of the plasma shape. After massive simulations, this controller has been successfully tested on the plant. The experimental results show a significant improvement of the performance with respect to those obtained with a proportional integral derivative (PID) MIMO controller, that was used before on the plant. |
---|---|
ISSN: | 1063-6536 1558-0865 |
DOI: | 10.1109/TCST.2002.801805 |