Improved charge neutralization method for depth profiling of bulk insulators using O2+ primary beam on a magnetic sector SIMS instrument
Use of electrons for charge neutralization during positive secondary ion SIMS analysis of insulators has typically been achieved using coincident primary ion and electron beams. The normal incidence electron gun on CAMECA magnetic sector SIMS instruments can effectively eliminate sample charging dur...
Gespeichert in:
Veröffentlicht in: | Applied surface science 2004-06, Vol.231-232, p.786-790 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Use of electrons for charge neutralization during positive secondary ion SIMS analysis of insulators has typically been achieved using coincident primary ion and electron beams. The normal incidence electron gun on CAMECA magnetic sector SIMS instruments can effectively eliminate sample charging during analysis of thin insulating films if the electron energy is sufficient to penetrate the film. However, positive secondary ion SIMS bulk insulator analysis using this instrument can be difficult, especially if high sputtering rates are required. A neutralization method has been developed utilizing electron beam impact of a region adjacent to the sputtered area. Prior to analysis, the surface of the sample is coated with gold which provides a conductive surface layer and which has a high secondary and backscattered electron yield. Results have been obtained showing excellent neutralization for a variety of bulk insulators including glass, silica, alumina, and lithium niobate. Sputtering rates exceeding 2 nm/s have been achieved in bulk silica. The technique should be applicable to minerals and possibly for other materials in cases where the analyzed area cannot be directly irradiated with an electron beam. |
---|---|
ISSN: | 0169-4332 |
DOI: | 10.1016/j.apsusc.2004.03.070 |