DECOUPLING PDE COMPUTATION WITH INTRINSIC OR INERTIAL ROBIN INTERFACE CONDITION

We study decoupled numerical methods for multi-domain, multi-physics applications. By investigating various stages of numerical approximation and decoupling and tracking how the information is transmitted across the interface for a typical multi-modeling model problem, we derive an approximate intri...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Electronic Research Archive 2021-06, Vol.29 (2), p.2007-2028
Hauptverfasser: Zhang, Lian, Cai, Mingchao, Mu, Mo
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2028
container_issue 2
container_start_page 2007
container_title Electronic Research Archive
container_volume 29
creator Zhang, Lian
Cai, Mingchao
Mu, Mo
description We study decoupled numerical methods for multi-domain, multi-physics applications. By investigating various stages of numerical approximation and decoupling and tracking how the information is transmitted across the interface for a typical multi-modeling model problem, we derive an approximate intrinsic or inertial type Robin condition for its semi-discrete model. This new interface condition is justified both mathematically and physically in contrast to the classical Robin interface condition conventionally introduced for decoupling multi-modeling problems. Based on the intrinsic or inertial Robin condition, an equivalent semi-discrete model is introduced, which provides a general framework for devising effective decoupled numerical methods. Numerical experiments also confirm the effectiveness of this new decoupling approach.
doi_str_mv 10.3934/era.2020102
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_2825156170</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A685609891</galeid><sourcerecordid>A685609891</sourcerecordid><originalsourceid>FETCH-LOGICAL-c393t-5f836db542244f1fca3ea85af76fcefe79ec2ee09875f08e45a771c56f48dce43</originalsourceid><addsrcrecordid>eNpNUM9PwjAUboxGCHLybnY0MWDbtVt3nGNAE9zIHPG4lPJqZjaGGxz87-0CGvMO79f3vfflQ-ie4KkbuOwZWjWlmGKC6RUaUk-ICeEBu_5XD9C46z4xxlQQjJl3iwau72JOCR6idBZH6Wa9ksnCWc9iJ0pf15s8zGWaOO8yXzoyyTOZvMnISTPbxFkuw5WTpS8y6XdxNg-jnpbMZE-6QzdGVR2ML3mENvM4j5aTVbqQUbiaaCv7OOFGuN5uyxmljBlitHJBCa6M7xkNBvwANAXAgfC5wQIYV75PNPcMEzsNzB2hx_PdQ9t8naA7FnXZaagqtYfm1BVUUE64R3xsodMz9ENVUJR70xxbpW3soC51swdT2nnoCe7ZfwGxhKczQbdN17VgikNb1qr9LgguetcL63pxcd2iHy5KTtsadn_YX4_dH6UQdUs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2825156170</pqid></control><display><type>article</type><title>DECOUPLING PDE COMPUTATION WITH INTRINSIC OR INERTIAL ROBIN INTERFACE CONDITION</title><source>Alma/SFX Local Collection</source><creator>Zhang, Lian ; Cai, Mingchao ; Mu, Mo</creator><creatorcontrib>Zhang, Lian ; Cai, Mingchao ; Mu, Mo</creatorcontrib><description>We study decoupled numerical methods for multi-domain, multi-physics applications. By investigating various stages of numerical approximation and decoupling and tracking how the information is transmitted across the interface for a typical multi-modeling model problem, we derive an approximate intrinsic or inertial type Robin condition for its semi-discrete model. This new interface condition is justified both mathematically and physically in contrast to the classical Robin interface condition conventionally introduced for decoupling multi-modeling problems. Based on the intrinsic or inertial Robin condition, an equivalent semi-discrete model is introduced, which provides a general framework for devising effective decoupled numerical methods. Numerical experiments also confirm the effectiveness of this new decoupling approach.</description><identifier>ISSN: 2688-1594</identifier><identifier>EISSN: 2688-1594</identifier><identifier>DOI: 10.3934/era.2020102</identifier><identifier>PMID: 37305210</identifier><language>eng</language><publisher>United States: AIMS Press</publisher><ispartof>Electronic Research Archive, 2021-06, Vol.29 (2), p.2007-2028</ispartof><rights>COPYRIGHT 2021 AIMS Press</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c393t-5f836db542244f1fca3ea85af76fcefe79ec2ee09875f08e45a771c56f48dce43</citedby><cites>FETCH-LOGICAL-c393t-5f836db542244f1fca3ea85af76fcefe79ec2ee09875f08e45a771c56f48dce43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37305210$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhang, Lian</creatorcontrib><creatorcontrib>Cai, Mingchao</creatorcontrib><creatorcontrib>Mu, Mo</creatorcontrib><title>DECOUPLING PDE COMPUTATION WITH INTRINSIC OR INERTIAL ROBIN INTERFACE CONDITION</title><title>Electronic Research Archive</title><addtitle>Electron Res Arch</addtitle><description>We study decoupled numerical methods for multi-domain, multi-physics applications. By investigating various stages of numerical approximation and decoupling and tracking how the information is transmitted across the interface for a typical multi-modeling model problem, we derive an approximate intrinsic or inertial type Robin condition for its semi-discrete model. This new interface condition is justified both mathematically and physically in contrast to the classical Robin interface condition conventionally introduced for decoupling multi-modeling problems. Based on the intrinsic or inertial Robin condition, an equivalent semi-discrete model is introduced, which provides a general framework for devising effective decoupled numerical methods. Numerical experiments also confirm the effectiveness of this new decoupling approach.</description><issn>2688-1594</issn><issn>2688-1594</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNpNUM9PwjAUboxGCHLybnY0MWDbtVt3nGNAE9zIHPG4lPJqZjaGGxz87-0CGvMO79f3vfflQ-ie4KkbuOwZWjWlmGKC6RUaUk-ICeEBu_5XD9C46z4xxlQQjJl3iwau72JOCR6idBZH6Wa9ksnCWc9iJ0pf15s8zGWaOO8yXzoyyTOZvMnISTPbxFkuw5WTpS8y6XdxNg-jnpbMZE-6QzdGVR2ML3mENvM4j5aTVbqQUbiaaCv7OOFGuN5uyxmljBlitHJBCa6M7xkNBvwANAXAgfC5wQIYV75PNPcMEzsNzB2hx_PdQ9t8naA7FnXZaagqtYfm1BVUUE64R3xsodMz9ENVUJR70xxbpW3soC51swdT2nnoCe7ZfwGxhKczQbdN17VgikNb1qr9LgguetcL63pxcd2iHy5KTtsadn_YX4_dH6UQdUs</recordid><startdate>20210601</startdate><enddate>20210601</enddate><creator>Zhang, Lian</creator><creator>Cai, Mingchao</creator><creator>Mu, Mo</creator><general>AIMS Press</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IAO</scope><scope>7X8</scope></search><sort><creationdate>20210601</creationdate><title>DECOUPLING PDE COMPUTATION WITH INTRINSIC OR INERTIAL ROBIN INTERFACE CONDITION</title><author>Zhang, Lian ; Cai, Mingchao ; Mu, Mo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c393t-5f836db542244f1fca3ea85af76fcefe79ec2ee09875f08e45a771c56f48dce43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Lian</creatorcontrib><creatorcontrib>Cai, Mingchao</creatorcontrib><creatorcontrib>Mu, Mo</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale Academic OneFile</collection><collection>MEDLINE - Academic</collection><jtitle>Electronic Research Archive</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Lian</au><au>Cai, Mingchao</au><au>Mu, Mo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>DECOUPLING PDE COMPUTATION WITH INTRINSIC OR INERTIAL ROBIN INTERFACE CONDITION</atitle><jtitle>Electronic Research Archive</jtitle><addtitle>Electron Res Arch</addtitle><date>2021-06-01</date><risdate>2021</risdate><volume>29</volume><issue>2</issue><spage>2007</spage><epage>2028</epage><pages>2007-2028</pages><issn>2688-1594</issn><eissn>2688-1594</eissn><abstract>We study decoupled numerical methods for multi-domain, multi-physics applications. By investigating various stages of numerical approximation and decoupling and tracking how the information is transmitted across the interface for a typical multi-modeling model problem, we derive an approximate intrinsic or inertial type Robin condition for its semi-discrete model. This new interface condition is justified both mathematically and physically in contrast to the classical Robin interface condition conventionally introduced for decoupling multi-modeling problems. Based on the intrinsic or inertial Robin condition, an equivalent semi-discrete model is introduced, which provides a general framework for devising effective decoupled numerical methods. Numerical experiments also confirm the effectiveness of this new decoupling approach.</abstract><cop>United States</cop><pub>AIMS Press</pub><pmid>37305210</pmid><doi>10.3934/era.2020102</doi><tpages>22</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2688-1594
ispartof Electronic Research Archive, 2021-06, Vol.29 (2), p.2007-2028
issn 2688-1594
2688-1594
language eng
recordid cdi_proquest_miscellaneous_2825156170
source Alma/SFX Local Collection
title DECOUPLING PDE COMPUTATION WITH INTRINSIC OR INERTIAL ROBIN INTERFACE CONDITION
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T08%3A42%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=DECOUPLING%20PDE%20COMPUTATION%20WITH%20INTRINSIC%20OR%20INERTIAL%20ROBIN%20INTERFACE%20CONDITION&rft.jtitle=Electronic%20Research%20Archive&rft.au=Zhang,%20Lian&rft.date=2021-06-01&rft.volume=29&rft.issue=2&rft.spage=2007&rft.epage=2028&rft.pages=2007-2028&rft.issn=2688-1594&rft.eissn=2688-1594&rft_id=info:doi/10.3934/era.2020102&rft_dat=%3Cgale_proqu%3EA685609891%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2825156170&rft_id=info:pmid/37305210&rft_galeid=A685609891&rfr_iscdi=true