DECOUPLING PDE COMPUTATION WITH INTRINSIC OR INERTIAL ROBIN INTERFACE CONDITION

We study decoupled numerical methods for multi-domain, multi-physics applications. By investigating various stages of numerical approximation and decoupling and tracking how the information is transmitted across the interface for a typical multi-modeling model problem, we derive an approximate intri...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Electronic Research Archive 2021-06, Vol.29 (2), p.2007-2028
Hauptverfasser: Zhang, Lian, Cai, Mingchao, Mu, Mo
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We study decoupled numerical methods for multi-domain, multi-physics applications. By investigating various stages of numerical approximation and decoupling and tracking how the information is transmitted across the interface for a typical multi-modeling model problem, we derive an approximate intrinsic or inertial type Robin condition for its semi-discrete model. This new interface condition is justified both mathematically and physically in contrast to the classical Robin interface condition conventionally introduced for decoupling multi-modeling problems. Based on the intrinsic or inertial Robin condition, an equivalent semi-discrete model is introduced, which provides a general framework for devising effective decoupled numerical methods. Numerical experiments also confirm the effectiveness of this new decoupling approach.
ISSN:2688-1594
2688-1594
DOI:10.3934/era.2020102