Plasmonic Scattering Imaging of Surface-Bonded Nanoparticles at the Solution–Solid Interface

Imaging nanoscale objects at interfaces is essential for revealing surface-tuned mechanisms in chemistry, physics, and life science. Plasmonic-based imaging, a label-free and surface-sensitive technique, has been widely used for studying the chemical and biological behavior of nanoscale objects at i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS applied materials & interfaces 2023-06, Vol.15 (24), p.29561-29567
Hauptverfasser: Lv, Wen-Li, Qian, Chen, Cao, Cheng-Xin, Lv, Zhen-Ting, Liu, Xian-Wei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Imaging nanoscale objects at interfaces is essential for revealing surface-tuned mechanisms in chemistry, physics, and life science. Plasmonic-based imaging, a label-free and surface-sensitive technique, has been widely used for studying the chemical and biological behavior of nanoscale objects at interfaces. However, direct imaging of surface-bonded nanoscale objects remains challenging due to uneven image backgrounds. Here, we present a new surface-bonded nanoscale object detection microscopy that eliminates strong background interference by reconstructing accurate scattering patterns at different positions. Our method effectively functions at low signal-to-background ratios, allowing for optical scattering detection of surface-bonded polystyrene nanoparticles and severe acute respiratory syndrome coronavirus 2 pseudovirus. It is also compatible with other imaging configurations, such as bright-field imaging. This technique complements existing methods for dynamic scattering imaging and broadens the applications of plasmonic imaging techniques for high-throughput sensing of surface-bonded nanoscale objects, enhancing our understanding of the properties, composition, and morphology of nanoparticles and surfaces at the nanoscale.
ISSN:1944-8244
1944-8252
DOI:10.1021/acsami.3c04416