Na+/K+ enhanced the stability of the air/water interface of soy hull polysaccharide and intestinal mucus

The stable energy barrier of mucin and soy hull polysaccharide (SHP) is established at the air/water interface in the intestinal fluid and is conducive to the absorption and transportation of nutrients. This study aimed to investigate the effect of different concentrations (0.5 % and 1.5 %) of Na+ a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of biological macromolecules 2023-08, Vol.245, p.125206-125206, Article 125206
Hauptverfasser: Wu, Xinghui, Yang, Lina, Xia, Mingjie, Yu, Kejin, Cai, Wenqi, Shi, Taiyuan, Xie, Mengxi, Liu, He
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The stable energy barrier of mucin and soy hull polysaccharide (SHP) is established at the air/water interface in the intestinal fluid and is conducive to the absorption and transportation of nutrients. This study aimed to investigate the effect of different concentrations (0.5 % and 1.5 %) of Na+ and K+ on the energy barrier through the digestive system model in vitro. The interaction between ions and microwave-assisted ammonium oxalate-extracted SP (MASP)/mucus was characterized by particle size, zeta potential, interfacial tension, surface hydrophobicity, Fourier transform infrared spectroscopy, endogenous fluorescence spectroscopy, microstructure, and shear rheology. The results showed that the interactions between ions and MASP/mucus included electrostatic interaction, hydrophobic interaction, and hydrogen bond. The MASP/mucus miscible system was destabilized after 12 h, and the ions could improve the system stability to some extent. MASP aggregated continuously with the increase in the ion concentration, and large MASP aggregates were trapped above the mucus layer. Furthermore, the adsorption of MASP/mucus at the interface increased and then decreased. These findings provided a theoretical basis for an in-depth understanding of the mechanism of action of MASP in the intestine. [Display omitted] •The Na+ and K+ enhanced the stability of MASP/mucus miscible system.•The Na+ and K+ increased the physical adsorption of the MASP to the mucin.•The MASP was aggregated and trapped above the mucus layer after Na+ and K+ treatment.
ISSN:0141-8130
1879-0003
DOI:10.1016/j.ijbiomac.2023.125206