Effect of 20 μm thin ceramic coatings of hydroxyapatite, bioglass, GB14 and Beta-Tricalciumphosphate with copper on the biomechanical stability of femoral implants
In the present work, we test four thin coatings for titanium implants, namely, bioglass, GB14, Beta-Tricalciumphosphate (β-TCP) and hydroxyapatite (HA) with and without incorporated copper ions for their osteointegrative capacity. A rabbit drill hole model for time intervals up to 24 weeks was used...
Gespeichert in:
Veröffentlicht in: | Journal of the mechanical behavior of biomedical materials 2023-08, Vol.144, p.105951-105951, Article 105951 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In the present work, we test four thin coatings for titanium implants, namely, bioglass, GB14, Beta-Tricalciumphosphate (β-TCP) and hydroxyapatite (HA) with and without incorporated copper ions for their osteointegrative capacity. A rabbit drill hole model for time intervals up to 24 weeks was used in this study. Implant fixation was evaluated by measuring shear strength of the implant/bone interface. Quantitative histological analysis was performed for the measurements of bone contact area. Implants with and without copper ions were compared after 24 weeks. Thin coatings of GB14, HA or TCP on titanium implants demonstrated high shear strength during the entire test period of up to 24 weeks. Results confirmed osteointegrative properties of the coatings and did not reveal any negative effect of copper ions on osteointegration. The integration of copper in degradable osteoconductive coatings with a thickness of approx. 20 μm represents a promising method of achieving antibacterial shielding during the entire period of bone healing while at the same time improving osteointegration of the implants. |
---|---|
ISSN: | 1751-6161 1878-0180 |
DOI: | 10.1016/j.jmbbm.2023.105951 |