Degradation of methylene blue using a novel gas-liquid hybrid DDBD reactor: Performance and pathways

A novel gas-liquid hybrid double dielectric barrier discharge (DDBD) reactor with coaxial cylinder configuration was developed for the degradation of methylene blue (MB) in this study. In this DDBD reactor, the reactive species generation occurred in the gas-phase discharge, directly in the liquid,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemosphere (Oxford) 2023-09, Vol.336, p.139172-139172, Article 139172
Hauptverfasser: Yao, Xiaomei, Fang, Yingbo, Guo, Yanxun, Xu, Minghao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A novel gas-liquid hybrid double dielectric barrier discharge (DDBD) reactor with coaxial cylinder configuration was developed for the degradation of methylene blue (MB) in this study. In this DDBD reactor, the reactive species generation occurred in the gas-phase discharge, directly in the liquid, and in the mixture of the working gas bubbles and the liquid, which could effectively increase the contact area between the active substance and MB molecules/intermediates, resulting in an excellent MB degradation efficiency and mineralization (COD and TOC). The electrostatic field simulation analysis by Comsol was carried out to determine the appropriate structural parameters of the DDBD reactor. The effect of discharge voltage, air flow rate, pH, and initial concentration on MB degradation was evaluated. Besides, major oxide species, ·OH, the dissolved O3 and H2O2 generated in this DDBD reactor were determined. Moreover, major MB degradation intermediates were identified by LC-MS, based on which, possible degradation pathways of MB were proposed. [Display omitted] •A gas-liquid hybrid DDBD reactor is employed for an effective MB degradation.•The parameters of the DDBD reactor are determined by electrostatic field simulation.•The main active substances and the possible degradation pathway are determined.
ISSN:0045-6535
1879-1298
DOI:10.1016/j.chemosphere.2023.139172