Increased uptake of deep soil water promotes drought resistance in mixed forests

The intensity and frequency of droughts are projected to rise in recent years and adversely affect forests. Thus, information on plant water use and acclimation during and after droughts is crucial. This study used the stable isotope and thermal dissipation probes to detect the water-use adaptation...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Plant, cell and environment cell and environment, 2023-11, Vol.46 (11), p.3218-3228
Hauptverfasser: Liu, Ziqiang, Ye, Limin, Jiang, Jiang, Liu, Rilin, Xu, Yuanke, Jia, Guodong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The intensity and frequency of droughts are projected to rise in recent years and adversely affect forests. Thus, information on plant water use and acclimation during and after droughts is crucial. This study used the stable isotope and thermal dissipation probes to detect the water-use adaptation of mixed forests to drought using a precipitation gradient control experiment in the field. The results showed that Platycladus orientalis and Quercus variabilis mainly absorbed stable water from deep soil layers during the drought (32.05% and 28.2%, respectively). The synergetic nocturnal sap flow in both species replenished the water loss, but P. orientalis experienced a greater decline in transpiration acclimation to drought. The transpiration of Q. variabilis remained high since it was mainly induced by radiation. After short-term exposure to drought, P. orientalis majorly obtained shallow soil water, confirming its sensitivity to shallow water. Contrarily, Q. variabilis mainly absorbed stable water from deep soil layers regardless of the soil water content. Therefore, these findings suggest that Q. variabilis cannot physiologically adjust to extreme drought events, possibly limiting their future distributions and altering the composition of boreal forests.
ISSN:0140-7791
1365-3040
DOI:10.1111/pce.14642