Modeling Angle Beam Ultrasonic Testing Using Multi-Gaussian Beams

This paper proposes a new approach to modeling angle beam ultrasonic testing that can predict pulse-echo signals, in an absolute and computationally efficient manner, from various reflectors in steel welded joints. This approach relies on a model of the entire ultrasonic measurement process, a model...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of nondestructive evaluation 2004-09, Vol.23 (3), p.81-93
Hauptverfasser: Kim, Hak-Joon, Park, Joon-Soo, Song, Sung-Jin, Schmerr, Jr, Lester W.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper proposes a new approach to modeling angle beam ultrasonic testing that can predict pulse-echo signals, in an absolute and computationally efficient manner, from various reflectors in steel welded joints. This approach relies on a model of the entire ultrasonic measurement process, a model which requires one to solve three subsidiary problems; 1) determination of a system efficiency factor, 2) evaluation of the ultrasonic beam field around the flaw, and 3) calculation of the scattering from the reflector. Here, solutions are offered for each of those three subsidiary problems. To solve the first problem we employ the specular reflection from the cylindrical part of a STB-A1 (Standard Test Block in compliance with Japanese Industrial Standards Z 2347) (equivalently IIW (International Institute of Welding) type 1) standard block to determine the system efficiency factor. To solve the second problem, we calculate the ultrasonic wave field at the flaw with a highly efficient multi-Gaussian beam model. For the third problem, we treat the scattering from a reflector by high frequency approximations. We explicitly give the solutions to all three of these subsidiary problems for counter bore, crack, and side-drilled hole reflectors. Experimental results that validate this approach are also given.
ISSN:0195-9298
DOI:10.1023/B:JONE.0000048864.32407.d8