Numerical prediction of unsteady vortex shedding for large leading-edge roughness

A full two-dimensional Navier–Stokes algorithm is used to investigate unsteady, incompressible viscous flow past an airfoil leading edge with surface roughness that is characteristic of ice accretion. The roughness is added to the surface through the use of a Prandtl transposition and can generate b...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computers & fluids 2004-03, Vol.33 (3), p.405-434
Hauptverfasser: Huebsch, Wade W., Rothmayer, Alric P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A full two-dimensional Navier–Stokes algorithm is used to investigate unsteady, incompressible viscous flow past an airfoil leading edge with surface roughness that is characteristic of ice accretion. The roughness is added to the surface through the use of a Prandtl transposition and can generate both small-scale and large-scale roughness. The focus of the study is a detailed flow analysis of the unsteady velocity fluctuations and vortex shedding induced by the surface roughness. The results of this study are compared to experimental data on roughness-induced transition for the same roughness geometry. A comparison is made between “fluctuation intensity” values from the current algorithm to experimentally determined turbulence intensity values. The effects of the roughness Reynolds number, Re k , are investigated and compared to experimental values of the critical roughness Reynolds number. The authors speculate that there may be a possible correlation between unsteady roughness-induced vortex shedding and the onset of experimentally measured transitional flow downstream of large-scale roughness.
ISSN:0045-7930
1879-0747
DOI:10.1016/S0045-7930(03)00073-2