Determination of the true congruent composition for LiTaO/sub 3/ single crystals using the LFB ultrasonic material characterization system

The true congruent composition for LiTaO/sub 3/ single crystals was determined by measuring the velocities of leaky surface acoustic waves (LSAWs) with the line-focus-beam ultrasonic material characterization (LFB-UMC) system for two 42/spl deg/YX-LiTaO/sub 3/ crystal ingots. The congruent compositi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on ultrasonics, ferroelectrics, and frequency control ferroelectrics, and frequency control, 2006-02, Vol.53 (2), p.385-392
Hauptverfasser: Kushibiki, J., Ohashi, Y.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The true congruent composition for LiTaO/sub 3/ single crystals was determined by measuring the velocities of leaky surface acoustic waves (LSAWs) with the line-focus-beam ultrasonic material characterization (LFB-UMC) system for two 42/spl deg/YX-LiTaO/sub 3/ crystal ingots. The congruent composition determined here was 48.460 Li/sub 2/O-mol%, corresponding to the LSAW velocity (42/spl deg/YX-LiTaO/sub 3/) of 3125.3 m/s, and the absolute relationship between the LSAW velocity and chemical composition was obtained. Simulations on the variation of the melt and crystal compositions in a mass production of 100 crystals were conducted as a function of the composition of the starting material around the congruent composition. The result showed that the distributions of the melt and crystal compositions within and among the crystals varied largely with the material composition, providing the relationship of the material composition with the maximum composition variation for the 100 crystals. Based on these results, we verified the relationships between the tolerance of the material composition variation and the tolerances for the SH-type SAW velocity, LSAW velocity, and Curie temperature. The material composition needs to be constrained to within /spl plusmn/0.007 Li/sub 2/O-mol% around the congruent composition to mass-produce the crystals with reliable homogeneity, satisfying the tolerance of /spl plusmn/0.01% in the SAW velocity. Furthermore, a guideline for the specification of reliable piezoelectric SAW-device wafer substrates was presented with the accurate interrelationships among the chemical composition ratio, LSAW velocity, and Curie temperature.
ISSN:0885-3010
1525-8955
0885-3010
DOI:10.1109/TUFFC.2006.1593377