Feasibility study of total marrow lymphoid irradiation with volumetric modulated arc therapy: clinical implementation in a tertiary care center

Purpose Total marrow lymphoid irradiation (TMLI) with volumetric modulated arc therapy (VMAT) is challenging due to large treatment fields with multiple isocenters, field matching at junctions, and targets being surrounded by many organs at risk. This study aimed to describe our methodology for safe...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Strahlentherapie und Onkologie 2023-10, Vol.199 (10), p.922-935
Hauptverfasser: Godson, Henry Finlay, Raj, Jose Solomon, Sebastian, Patricia, Ponmalar, Retna Y., Babu, Ebenezer Suman, Paul, Ivin, Krishna, Raj, Backianathan, Selvamani, George, Biju, Ravindran, Paul B., Balakrishnan, Rajesh
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Purpose Total marrow lymphoid irradiation (TMLI) with volumetric modulated arc therapy (VMAT) is challenging due to large treatment fields with multiple isocenters, field matching at junctions, and targets being surrounded by many organs at risk. This study aimed to describe our methodology for safe dose escalation and accurate dose delivery of TMLI treatment with the VMAT technique based on early experience at our center. Materials and methods Computed tomography (CT) scans were acquired in head-first supine and feet-first supine orientations for each patient with an overlap at mid-thigh. VMAT plans were generated for 20 patients on the head-first CT images with either three or four isocenters in the Eclipse treatment planning system (Varian Medical Systems Inc., Palo Alto, CA) and the treatment was delivered in a Clinac 2100 C/D linear accelerator (Varian Medical Systems Inc., Palo Alto, CA). Results Five patients were treated with a prescription dose of 13.5 Gy in 9 fractions and 15 patients were treated with an escalated dose of 15 Gy in 10 fractions. The mean doses to 95% of the clinical target volume (CTV) and planning target volume (PTV) were 14.3 ± 0.3 Gy and 13.6 ± 0.7 Gy for the prescription doses of 15 Gy, and 13 ± 0.2 Gy and 12.3 ± 0.3 Gy for the prescription doses of 13.5 Gy, respectively. Mean dose to the lung in both schedules was 8.7 ± 0.6 Gy. The overall time taken to execute the treatment plans was approximately 2 h for the first fraction and 1.5 h for subsequent fractions. The average in-room time of 15.5 h per patient over 5 days leads to potential changes in the regular treatment schedules for other patients. Conclusion This feasibility study highlights the methodology adopted for safe implementation of TMLI with the VMAT technique at our institution. Escalation of dose to the target with adequate coverage and sparing of critical structures was achieved with the adopted treatment technique. Clinical implementation of this methodology at our center could serve as a practical guide to start the VMAT-based TMLI program safely by others who are keen to start this service.
ISSN:0179-7158
1439-099X
DOI:10.1007/s00066-023-02100-x