Lemur tyrosine kinase 2 has a tumor-inhibition function in human glioblastoma by regulating the RUNX3/Notch pathway
Deregulation of lemur tyrosine kinase 2 (LMTK2) is a vital determinant for the onset and progression of malignancies, yet the relationship between LMTK2 and glioblastoma (GBM) is undetermined. This study was carried out to determine the relevance of LMTK2 in GBM. Initiating investigation by assessin...
Gespeichert in:
Veröffentlicht in: | Biochimica et biophysica acta. Molecular cell research 2023-10, Vol.1870 (7), p.119509-119509, Article 119509 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Deregulation of lemur tyrosine kinase 2 (LMTK2) is a vital determinant for the onset and progression of malignancies, yet the relationship between LMTK2 and glioblastoma (GBM) is undetermined. This study was carried out to determine the relevance of LMTK2 in GBM. Initiating investigation by assessing The Cancer Genome Atlas (TCGA) data showed LMTK2 mRNA levels were decreased in GBM tissue. Later examination of clinical specimens confirmed low levels of LMTK2 mRNA and protein in GBM tissue. The downregulated level of LMTK2 in patients with GBM was related to poor overall survival. A suppressive function of LMTK2 on the proliferative capability and metastatic potential of GBM cells was demonstrated by overexpressing LMTK2 in GBM cell lines. Moreover, the restoration of LMTK2 augmented the sensitivity of GBM cells to the chemotherapy drug temozolomide. The mechanistic investigation uncovered LMTK2 as a regulator of the runt-related transcription factor 3 (RUNX3)/Notch signaling pathway. The overexpression of LMTK2 increased the expression of RUNX3 while inhibiting the activation of Notch signaling. The silencing of RUNX3 diminished the regulatory role of LMTK2 on Notch signaling. The inhibition of Notch signaling reversed the LMTK2-silencing-elicited protumor effects. Importantly, LMTK2-overexpressed GBM cells displayed weakened tumorigenicity in xenograft models. Our findings illustrate that LMTK2 has a tumor-inhibition function in GBM by constraining Notch signaling via RUNX3. This work indicates the deregulation of the LMTK2-mediated RUNX3/Notch signaling pathway may be a novel molecular mechanism for the malignant transformation of GBMs. This work highlights the interest in LMTK2-related approaches for treating GBM.
[Display omitted]
•LMTK2 level was decreased in GBM and has a prognostic value.•LMTK2 overexpression in GBM cells exerted an antitumor effect.•LMTK2 acted as a novel regulator of the RUNX3/Notch pathway.•LMTK2 modulated GBM progression by the RUNX3/Notch pathway. |
---|---|
ISSN: | 0167-4889 1879-2596 |
DOI: | 10.1016/j.bbamcr.2023.119509 |