Discovery of Small-Molecule Degraders for Alpha-Synuclein Aggregates

Alpha-synuclein (αSyn) species, especially the oligomers and fibers, are associated with multiple neurodegenerative diseases and cannot be directly targeted under the conventional pharmacological paradigm. Proteolysis-targeting chimera technology confers degradation of various “undruggable” targets;...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of medicinal chemistry 2023-06, Vol.66 (12), p.7926-7942
Hauptverfasser: Tong, Yichen, Zhu, Wentao, Chen, Jian, Wen, Tianzhi, Xu, Fang, Pang, Jiyan
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Alpha-synuclein (αSyn) species, especially the oligomers and fibers, are associated with multiple neurodegenerative diseases and cannot be directly targeted under the conventional pharmacological paradigm. Proteolysis-targeting chimera technology confers degradation of various “undruggable” targets; however, hardly any small-molecule degrader for αSyn aggregates has been reported yet. Herein, by using the probe molecule sery308 as a warhead, a series of small-molecule degraders for αSyn aggregates were designed and synthesized. Their degradation effects on αSyn aggregates were evaluated on a modified pre-formed fibril-seeding cell model. Compound 2b exhibited the highest degradation efficiency (DC50 = 7.51 ± 0.53 μM) with high selectivity. Mechanistic exploration revealed that both proteasomal and lysosomal pathways were involved in this kind of degradation. Moreover, the therapeutic effects of 2b were tested on SH-SY5Y (human neuroblastoma cell line) cells and Caenorhabditis elegans. Our results provided a new class of small-molecule candidates against synucleinopathies and broadened the substrate spectrum of PROTAC-based degraders.
ISSN:0022-2623
1520-4804
DOI:10.1021/acs.jmedchem.3c00274