A Low-Protein, High-Carbohydrate Diet Exerts a Neuroprotective Effect on Mice with 1‑Methyl-4-phenyl-1,2,3,6-tetrahydropyridine-Induced Parkinson’s Disease by Regulating the Microbiota-Metabolite–Brain Axis and Fibroblast Growth Factor 21

Parkinson’s disease (PD) is closely linked to lifestyle factors, particularly dietary patterns, which have attracted interest as potential disease-modifying factors. Eating a low-protein, high-carbohydrate (LPHC) diet is a promising dietary intervention against brain aging; however, its protective e...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of agricultural and food chemistry 2023-06, Vol.71 (23), p.8877-8893
Hauptverfasser: Chu, Chuanqi, Li, Tiantian, Yu, Leilei, Li, Yiwen, Li, Miaoyu, Guo, Min, Zhao, Jianxin, Zhai, Qixiao, Tian, Fengwei, Chen, Wei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Parkinson’s disease (PD) is closely linked to lifestyle factors, particularly dietary patterns, which have attracted interest as potential disease-modifying factors. Eating a low-protein, high-carbohydrate (LPHC) diet is a promising dietary intervention against brain aging; however, its protective effect on PD remains elusive. Here, we found that an LPHC diet ameliorated 1-methyl-4-phenyl-1,2,3,6-tetrathydropyridine (MPTP)-induced motor deficits, decreased dopaminergic neuronal death, and increased the levels of striatal dopamine, serotonin, and their metabolites in PD mice. Levels of fibroblast growth factor 21 (FGF-21), a member of the fibroblast growth factor family, were elevated in PD mice following LPHC treatment. Furthermore, the administration of FGF-21 exerted a protective effect on MPTP-induced PC12 cells, similar to the effect of an LPHC diet in MPTP-induced mice. Sequencing of the 16S rDNA from fecal microbiota revealed that an LPHC diet normalized the gut bacterial composition imbalance in PD mice, as evidenced by the increased abundance of the genera Bifidobacterium, Ileibacterium, Turicibacter, and Blautia and decreased abundance of Bilophila, Alistipes, and Bacteroides. PICRUSt-predicted fecal microbiome function revealed that an LPHC diet suppressed lipopolysaccharide biosynthesis and the citrate cycle (TCA cycle), biosynthesis of ubiquinone and other terpenoid-quinones, and oxidative phosphorylation pathways caused by MPTP, and enhanced the biosynthesis of amino acids, carbohydrate metabolism, and biosynthesis of other secondary metabolites. A nonmetabolomic analysis of the serum and feces showed that an LPHC diet significantly increased the levels of aromatic amino acids (AAAs), including tryptophan, tyrosine, and phenylalanine. In addition, an LPHC diet elevated the serum concentrations of bile acids (BAs), particularly tauroursodeoxycholic acid (TUDCA) and taurine. Collectively, our current findings point to the potential mechanism of administering an LPHC diet in attenuating movement impairments in MPTP-induced PD mice, with AAAs, microbial metabolites (TUDCA and taurine), and FGF-21 as key mediators along the gut-microbiota–brain axis.
ISSN:0021-8561
1520-5118
DOI:10.1021/acs.jafc.2c07606