Inhibitory Mechanism of Prenylated Flavonoids Isolated from Mulberry Leaves on α‑Glucosidase by Multi-Spectroscopy and Molecular Dynamics Simulation

Flavonoids have always been considered as the chemical basis for the hypoglycemic effect of mulberry leaves. In the course of our search for hypoglycemic effect agents from natural sources, a systematic study was launched to explore prenylated flavonoids from mulberry leaves. Herein, chemical invest...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of agricultural and food chemistry 2023-06, Vol.71 (23), p.9135-9147
Hauptverfasser: Tian, Jin-Long, Zhao, Min, Xu, Jing-Yi, Lv, Tian-Meng, Liu, Xiao-Chang, Sun, Sheng, Guan, Qi, Zhou, Zhen-Chi, Wu, Jie, Zhao, Ming-Yue, Li, Yue, Liu, Han-Xiao, Niu, Sheng-Li, Hu, Ping
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Flavonoids have always been considered as the chemical basis for the hypoglycemic effect of mulberry leaves. In the course of our search for hypoglycemic effect agents from natural sources, a systematic study was launched to explore prenylated flavonoids from mulberry leaves. Herein, chemical investigation led to the isolation of 10 characteristic prenylated flavonoids, including two new compounds (1 and 3). Their structures were elucidated based on spectroscopic data. All compounds exhibited good α-glucosidase inhibitory activity in vitro, among which compound 2 had the best activity (IC50 = 2.6 μM), better than acarbose (IC50 = 19.6 μM). Additional in vivo tests have further demonstrated compound that compound 2 has a good ability to reduce postprandial blood glucose. Then, multi-spectroscopic methods and molecular simulation studies were used to study the inhibition mechanism. The results showed that compound 2 was a mixed inhibition of α-glucosidase and the binding process was spontaneous, with van der Waals forces as the main driving force, followed by hydrogen bonding and electrostatic forces. The above studies enriched the chemical basis of mulberry leaves, and the application of computational chemistry also provided a reference for future research on such structures.
ISSN:0021-8561
1520-5118
DOI:10.1021/acs.jafc.3c00776