Combating fungal phytopathogens with human salivary antimicrobial peptide histatin 5 through a multi-target mechanism
Blast disease caused by Magnaporthe oryzae is a major contributor to decreased crop yield and rice production globally. The use of chemical fungicides to combat crop pathogens is not only unsafe but also promotes the emergence of pathogenic variants, leading to recurrent host infections. To address...
Gespeichert in:
Veröffentlicht in: | World journal of microbiology & biotechnology 2023-08, Vol.39 (8), p.215-215, Article 215 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Blast disease caused by
Magnaporthe oryzae
is a major contributor to decreased crop yield and rice production globally. The use of chemical fungicides to combat crop pathogens is not only unsafe but also promotes the emergence of pathogenic variants, leading to recurrent host infections. To address plant diseases, antimicrobial peptides have emerged as a promising alternative as they are effective, safe, and biodegradable antifungal agents. This study examines the antifungal activity and mechanism of action of the human salivary peptide histatin 5 (Hst5) on
M. oryzae
. Hst5 causes morphogenetic defects in the fungus, including non-uniform chitin distribution on the fungal cell wall and septa, deformed hyphal branching, and cell lysis. Importantly, a pore-forming mechanism of Hst5 in
M. oryzae
was ruled out. Furthermore, the interaction of Hst5 with the
M. oryzae
genomic DNA suggests that the peptide may also influence gene expression in the blast fungus. In addition to its effects on morphogenetic defects and cell lysis, Hst5 also inhibits conidial germination, appressorium formation, and the appearance of blast lesions on rice leaves. The elucidated multi-target antifungal mechanism of Hst5 in
M. oryzae
provides an environmentally friendly alternative to combating blast infections in rice by preventing fungal pathogenicity. The promising antifungal characteristics of the AMP peptide may also be explored for other crop pathogens, making it a potential biofungicide for the future. |
---|---|
ISSN: | 0959-3993 1573-0972 |
DOI: | 10.1007/s11274-023-03667-4 |