Rhythmic cilia changes support SCN neuron coherence in circadian clock

The suprachiasmatic nucleus (SCN) drives circadian clock coherence through intercellular coupling, which is resistant to environmental perturbations. We report that primary cilia are required for intercellular coupling among SCN neurons to maintain the robustness of the internal clock in mice. Cilia...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Science (American Association for the Advancement of Science) 2023-06, Vol.380 (6648), p.972-979
Hauptverfasser: Tu, Hai-Qing, Li, Sen, Xu, Yu-Ling, Zhang, Yu-Cheng, Li, Pei-Yao, Liang, Li-Yun, Song, Guang-Ping, Jian, Xiao-Xiao, Wu, Min, Song, Zeng-Qing, Li, Ting-Ting, Hu, Huai-Bin, Yuan, Jin-Feng, Shen, Xiao-Lin, Li, Jia-Ning, Han, Qiu-Ying, Wang, Kai, Zhang, Tao, Zhou, Tao, Li, Ai-Ling, Zhang, Xue-Min, Li, Hui-Yan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The suprachiasmatic nucleus (SCN) drives circadian clock coherence through intercellular coupling, which is resistant to environmental perturbations. We report that primary cilia are required for intercellular coupling among SCN neurons to maintain the robustness of the internal clock in mice. Cilia in neuromedin S-producing (NMS) neurons exhibit pronounced circadian rhythmicity in abundance and length. Genetic ablation of ciliogenesis in NMS neurons enabled a rapid phase shift of the internal clock under jet-lag conditions. The circadian rhythms of individual neurons in cilia-deficient SCN slices lost their coherence after external perturbations. Rhythmic cilia changes drive oscillations of Sonic Hedgehog (Shh) signaling and clock gene expression. Inactivation of Shh signaling in NMS neurons phenocopied the effects of cilia ablation. Thus, cilia-Shh signaling in the SCN aids intercellular coupling.
ISSN:0036-8075
1095-9203
DOI:10.1126/science.abm1962