Computed SAR and thermal elevation in a 0.25-mm 2-D model of the human eye and head in response to an implanted retinal stimulator - part I: models and methods
Retinitis pigmentosa and age-related macular degeneration lead to blindness through progressive loss of retinal photoreceptors. Attempts are under way to construct a visual prosthesis to recover a limited sense of vision for these patients with the aid of implantable electronic devices. The function...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on antennas and propagation 2003-09, Vol.51 (9), p.2274-2285 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Retinitis pigmentosa and age-related macular degeneration lead to blindness through progressive loss of retinal photoreceptors. Attempts are under way to construct a visual prosthesis to recover a limited sense of vision for these patients with the aid of implantable electronic devices. The function of these microchips is to provide electrical stimulation to existing viable retinal tissues - living ganglion and bipolar cells - using an array of on-chip stimulus circuits, while the dominant mechanism for power and data communication for these implanted devices has been wireless inductive telemetry using coils. This paper describes methods and models used to estimate the heating induced in the human eye and surrounding head tissues subject to the operation of this retinal prosthesis. A two-dimensional 0.25-mm high-resolution human head model has been developed with the aid of a new semiautomatic graphical segmentation algorithm. Finite-difference-based numerical methods for both electromagnetic and thermal modeling have been used to determine the influence of the specific absorption rate (associated with 2-MHz inductive coupling to the implant) and of stimulator integrated circuit (IC) power on tissue heating under different operational conditions and different hypothesis on choroidal blood flow and properties of the complex implanted circuitry. Results, provided in Part II of this paper, show that temperature increases of approximately 0.6 and 0.4/spl deg/C are induced in the midvitreous of the human eye in the absence and presence of choroidal blood flow, respectively, for a 60-electrode retinal prosthesis chip. Correspondent temperature rises of approximately 0.19 and 0.004/spl deg/C on the retina are obtained for these cases. Comparison with in vivo experimental measurements on intraocular heating in dog eyes shows good agreement. |
---|---|
ISSN: | 0018-926X 1558-2221 |
DOI: | 10.1109/TAP.2003.816395 |