"Magic Numbers" in Self-Faceting of Alcohol-Doped Emulsion Droplets
Oil-in-water emulsion droplets spontaneously adopt, below some temperature T , counterintuitive faceted and complex non-spherical shapes while remaining liquid. This transition is driven by a crystalline monolayer formed at the droplets' surface. Here, we show that ppm-level doping of the dropl...
Gespeichert in:
Veröffentlicht in: | Small (Weinheim an der Bergstrasse, Germany) Germany), 2023-09, Vol.19 (39), p.e2301637-e2301637 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Oil-in-water emulsion droplets spontaneously adopt, below some temperature T
, counterintuitive faceted and complex non-spherical shapes while remaining liquid. This transition is driven by a crystalline monolayer formed at the droplets' surface. Here, we show that ppm-level doping of the droplet's bulk by long-chain alcohols allows tuning T
by >50 °C, implying formation of drastically different interfacial structures. Furthermore, "magic" alcohol chain lengths maximize T
. This we show to arise from self-assembly of mixed alcohol:alkane interfacial structures of stacked alkane layers, co-crystallized with hydrogen-bonded alcohol dimers. These structures are accounted for theoretically and resolved by direct cryogenic transmission electron microscopy (cryoTEM), confirming the proposed structures. The discovered tunability of key properties of commonly-used emulsions by minute concentrations of specific bulk additives should benefit these emulsions' technological applicability. |
---|---|
ISSN: | 1613-6810 1613-6829 |
DOI: | 10.1002/smll.202301637 |