All Resistive Pressure-Temperature Bimodal Sensing E-Skin for Object Classification

Electronic skin (E-skin) with multimodal sensing ability demonstrates huge prospects in object classification by intelligent robots. However, realizing the object classification capability of E-skin faces severe challenges in multiple types of output signals. Herein, a hierarchical pressure-temperat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Small (Weinheim an der Bergstrasse, Germany) Germany), 2023-09, Vol.19 (39), p.e2301593-e2301593
Hauptverfasser: Han, Shilei, Zhi, Xinrong, Xia, Yifan, Guo, Wenyu, Li, Qingqing, Chen, Delu, Liu, Kangting, Wang, Xin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Electronic skin (E-skin) with multimodal sensing ability demonstrates huge prospects in object classification by intelligent robots. However, realizing the object classification capability of E-skin faces severe challenges in multiple types of output signals. Herein, a hierarchical pressure-temperature bimodal sensing E-skin based on all resistive output signals is developed for accurate object classification, which consists of laser-induced graphene/silicone rubber (LIG/SR) pressure sensing layer and NiO temperature sensing layer. The highly conductive LIG is employed as pressure-sensitive material as well as the interdigital electrode. Benefiting from high conductivity of LIG, pressure perception exhibits an excellent sensitivity of -34.15 kPa . Meanwhile, a high temperature coefficient of resistance of -3.84%°C is obtained in the range of 24-40 °C. More importantly, based on only electrical resistance as the output signal, the bimodal sensing E-skin with negligible crosstalk can simultaneously achieve pressure and temperature perception. Furthermore, a smart glove based on this E-skin enables classifying various objects with different shapes, sizes, and surface temperatures, which achieves over 92% accuracy under assistance of deep learning. Consequently, the hierarchical pressure-temperature bimodal sensing E-skin demonstrates potential application in human-machine interfaces, intelligent robots, and smart prosthetics.
ISSN:1613-6810
1613-6829
DOI:10.1002/smll.202301593