A comparison of linear genetic programming and neural networks in medical data mining
We introduce a new form of linear genetic programming (GP). Two methods of acceleration of our GP approach are discussed: 1) an efficient algorithm that eliminates intron code and 2) a demetic approach to virtually parallelize the system on a single processor. Acceleration of runtime is especially i...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on evolutionary computation 2001-02, Vol.5 (1), p.17-26 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We introduce a new form of linear genetic programming (GP). Two methods of acceleration of our GP approach are discussed: 1) an efficient algorithm that eliminates intron code and 2) a demetic approach to virtually parallelize the system on a single processor. Acceleration of runtime is especially important when operating with complex data sets, because they are occurring in real-world applications. We compare GP performance on medical classification problems from a benchmark database with results obtained by neural networks. Our results show that GP performs comparably in classification and generalization. |
---|---|
ISSN: | 1089-778X 1941-0026 |
DOI: | 10.1109/4235.910462 |