A comparison of linear genetic programming and neural networks in medical data mining

We introduce a new form of linear genetic programming (GP). Two methods of acceleration of our GP approach are discussed: 1) an efficient algorithm that eliminates intron code and 2) a demetic approach to virtually parallelize the system on a single processor. Acceleration of runtime is especially i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on evolutionary computation 2001-02, Vol.5 (1), p.17-26
Hauptverfasser: Brameier, M., Banzhaf, W.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We introduce a new form of linear genetic programming (GP). Two methods of acceleration of our GP approach are discussed: 1) an efficient algorithm that eliminates intron code and 2) a demetic approach to virtually parallelize the system on a single processor. Acceleration of runtime is especially important when operating with complex data sets, because they are occurring in real-world applications. We compare GP performance on medical classification problems from a benchmark database with results obtained by neural networks. Our results show that GP performs comparably in classification and generalization.
ISSN:1089-778X
1941-0026
DOI:10.1109/4235.910462