The effects of age and postural constraints on prehension

Older adults adapt the execution of complex motor tasks to use compensatory strategies in the reaching-to-grasping (i.e., prehension) movement. The presence of postural constraints may exacerbate these compensatory strategies. Therefore, we investigated the reach-to-grasp action with different postu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Experimental brain research 2023-07, Vol.241 (7), p.1847-1859
Hauptverfasser: Campoi, Eduardo G., Campoi, Henrique G., Moraes, Renato
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Older adults adapt the execution of complex motor tasks to use compensatory strategies in the reaching-to-grasping (i.e., prehension) movement. The presence of postural constraints may exacerbate these compensatory strategies. Therefore, we investigated the reach-to-grasp action with different postural constraints (sitting, standing, and walking) in younger and older people and evaluated the postural stability during the reach-to-grasp action. Thirty individuals (15 younger and 15 older adults) performed the prehension under three postural tasks: sitting, standing, and walking. The reaching movement was slower in the walking task than in the other two postural tasks; however, there was no difference between the age groups. For the grasping action, the older adults presented a larger grip aperture, and the peak grip aperture occurred earlier during hand transportation in sitting and standing tasks. In the standing task, the margin of stability was smaller for older adults. In the walking task, there was no difference between the groups for the margin of stability. Also, prehension during sitting and standing tasks were similar, and both differed from walking across age groups. Finally, older adults reduced their margin of stability compared to younger adults, but only in the standing task. The margin of stability was similar between age groups during the walking task. We concluded that age affected grasping (distal component) but not reaching (proximal component), suggesting that healthy older adults have more difficulty controlling distal than proximal body segments.
ISSN:0014-4819
1432-1106
DOI:10.1007/s00221-023-06647-0