Considerations on performance evaluation of cavity-backed slot antenna using the FDTD technique

The finite-difference time-domain (FDTD) method is considered a versatile and efficient tool for the solution of Maxwell's equations in complex structures for any time dependence. We show an antenna feed model suitable for performance evaluation of a cavity-backed slot antenna using the FDTD te...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on antennas and propagation 2001-12, Vol.49 (12), p.1712-1717
Hauptverfasser: Hikage, T., Omiya, M., Itoh, K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The finite-difference time-domain (FDTD) method is considered a versatile and efficient tool for the solution of Maxwell's equations in complex structures for any time dependence. We show an antenna feed model suitable for performance evaluation of a cavity-backed slot antenna using the FDTD technique. The gap voltage and the coaxial feed models are examined, and their input characteristics and absolute gains are compared. Analytical results show that the input characteristics are estimated with fewer time steps for the coaxial model than for the conventional gap voltage model. Furthermore, we show how to calculate absolute gains and radiation patterns using the coaxial model and a sinusoidal voltage source at the desired frequency. The computed results of the absolute gain converge after the fifteenth period of the voltage source for the coaxial model and are in good agreement with the experimental results. On the other hand, the absolute gain is observed to fluctuate when the gap voltage model is used. The performance evaluation and comparison reveals that the coaxial model is an appropriate feed model for use in the analysis of the performance of the cavity-backed slot antenna using the FDTD technique. The good agreement of the FDTD results with the experimental measurements demonstrates the effectiveness of the model and the method proposed.
ISSN:0018-926X
1558-2221
DOI:10.1109/8.982450