UbcH5c-dependent activation of DNA-dependent protein kinase in response to replication-mediated DNA double-strand breaks
Camptothecin (CPT) exhibits strong cytotoxicity by inducing DNA double-strand breaks (DSBs) through DNA replication. Unlike radiation-induced DSBs, which have two DNA ends, CPT-induced DSBs are considered to have only one DNA end. However, the differences in cellular responses to one-ended and two-e...
Gespeichert in:
Veröffentlicht in: | Biochemical and biophysical research communications 2023-08, Vol.668, p.42-48 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Camptothecin (CPT) exhibits strong cytotoxicity by inducing DNA double-strand breaks (DSBs) through DNA replication. Unlike radiation-induced DSBs, which have two DNA ends, CPT-induced DSBs are considered to have only one DNA end. However, the differences in cellular responses to one-ended and two-ended DSBs are not well understood. Our previous study showed that proteasome inhibitor treatment suppressed CPT-induced activation of DNA-PK, a factor required for non-homologous end-joining in DSB repair, suggesting that the ubiquitin-proteasome pathway is involved in DNA-PK activation in response to one-ended DSBs. To identify the ubiquitination factors required for DNA-PK activation, we screened an siRNA library against E2 ubiquitin-conjugating enzymes and identified UbcH5c. Knockdown of UbcH5c suppressed DNA-PK activation caused by CPT, but not by the radio-mimetic drug neocarzinostatin. UbcH5c-dependent DNA-PK activation occurred independent of DNA end resection. Furthermore, loss of UbcH5c reduced DNA-PK-dependent chromosomal aberrations and suppressed the activation of cell cycle checkpoint in response to CPT. These results suggest that UbcH5c regulates DNA-PK activation in response to one-ended DSBs caused by replication fork collapse. To our knowledge, this is the first report of a DSB repair-related factor that is differentially involved in the response to one- and two-ended DSBs.
•UbcH5c is required for DNA-PK activation specifically in response to CPT.•Regulation of DNA-PK activation by UbcH5c occurs regardless of DNA end resection.•UbcH5c causes cell-cycle checkpoint activation and chromosome aberrations via DNA-PK. |
---|---|
ISSN: | 0006-291X 1090-2104 |
DOI: | 10.1016/j.bbrc.2023.05.068 |