Liquid Template Assisted Activation for "Egg Puff"-Like Hard Carbon toward High Sodium Storage Performance
The slow solid diffusion dynamics of sodium ions and the side-reaction of sodium metal plating at low potential in the hard carbon anode of sodium ion batteries (SIBs) pose significant challenges to the safety manipulation of high-rate batteries. Herein, a simple yet powerful fabricating method is r...
Gespeichert in:
Veröffentlicht in: | Small (Weinheim an der Bergstrasse, Germany) Germany), 2023-09, Vol.19 (39), p.e2302583-e2302583 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The slow solid diffusion dynamics of sodium ions and the side-reaction of sodium metal plating at low potential in the hard carbon anode of sodium ion batteries (SIBs) pose significant challenges to the safety manipulation of high-rate batteries. Herein, a simple yet powerful fabricating method is reported on for "egg puff"-like hard carbon with few N doping using rosin as a precursor via liquid salt template-assisted and potassium hydroxide dual activation. The as-synthesized hard carbon delivers promising electrochemical properties in the ether-based electrolyte especially at high rates, based on the absorption mechanism of fast charge transfer. The optimized hard carbon exhibits a high specific capacity of 367 mAh g
at 0.05 A g
and 92.9% initial coulombic efficiency (ICE), 183 mAh g
at 10 A g
, and ultra-long cycle stability of reversible discharge capacity of 151 mAh g
after 12,000 cycles at 5 A g
with the average coulombic efficiency of ≈99% and the decay of 0.0026% per cycle. These studies will undoubtedly provide an effective and practical strategy for advanced hard carbon anode of SIBs based on adsorption mechanism. |
---|---|
ISSN: | 1613-6810 1613-6829 |
DOI: | 10.1002/smll.202302583 |