Geometrical constraints on the evolution of ridged sea ice

A numerical model of the evolving draft distribution of seasonal pack ice is driven by freezing and ice field compression in one dimension. Spatial transects of sea ice draft acquired during winter in the Beaufort Sea are used to evaluate the model. Histograms obtained by ice‐profiling sonar on subs...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of Geophysical Research. C. Oceans 2004-06, Vol.109 (C6), p.C06005.1-n/a
Hauptverfasser: Amundrud, Trisha L., Melling, Humfrey, Ingram, R. Grant
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A numerical model of the evolving draft distribution of seasonal pack ice is driven by freezing and ice field compression in one dimension. Spatial transects of sea ice draft acquired during winter in the Beaufort Sea are used to evaluate the model. Histograms obtained by ice‐profiling sonar on subsea moorings reveal changes in the draft distribution, while observations of ice velocity by Doppler sonar allow calculation of the strain to which the draft distribution is responding. Numerical diffusion in thermal ice growth is controlled using a remapping algorithm. Mechanical redistribution algorithms in common use generate much more deep ridged ice than is observed. Geometric constraints on ridge‐keel development that reflect the finite extent of level floes available for ridge building and the true average shape of keels produce more realistic results. In the seasonal pack ice of the Beaufort Sea, 75% of all floes are too small to provide a volume of ice sufficient to construct a keel of draft equal to that commonly assumed in ice dynamics modeling. On average, the distribution of draft within keels has a negative exponential form, implying a cusped keel shape with more area on the thinner flanks than at the crest; models commonly assume a uniform redistribution of ice into a keel of triangular shape. Clearly, the spatial organization of ice within seasonal pack or, equivalently, the existence of ridges and floes should be an acknowledged factor in redistribution theory for pack ice thickness.
ISSN:0148-0227
2169-9275
2156-2202
2169-9291
DOI:10.1029/2003JC002251