Forced Response of a Squeeze Film Damper and Identification of Force Coefficients From Large Orbital Motions

Experimentally derived damping and inertia force coefficients from a test squeeze film damper for various dynamic load conditions are reported. Shakers exert single frequency loads and induce circular and elliptical orbits of increasing amplitudes. Measurements of the applied loads, bearing displace...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of tribology 2004-04, Vol.126 (2), p.292-300
Hauptverfasser: San Andre´s, Luis, De Santiago, Oscar
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Experimentally derived damping and inertia force coefficients from a test squeeze film damper for various dynamic load conditions are reported. Shakers exert single frequency loads and induce circular and elliptical orbits of increasing amplitudes. Measurements of the applied loads, bearing displacements and accelerations permit the identification of force coefficients for operation at three whirl frequencies (40, 50, and 60 Hz) and increasing lubricant temperatures. Measurements of film pressures reveal an early onset of air ingestion. Identified damping force coefficients agree well with predictions based on the short length bearing model only if an effective damper length is used. A published two-phase flow model for air entrainment allows the prediction of the effective damper length, and which ranges from 82% to 78% of the damper physical length as the whirl excitation frequency increases. Justifications for the effective length or reduced (flow) viscosity follow from the small through flow rate, not large enough to offset the dynamic volume changes. The measurements and analysis thus show the pervasiveness of air entrainment, whose effect increases with the amplitude and frequency of the dynamic journal motions. Identified inertia coefficients are approximately twice as large as those derived from classical theory.
ISSN:0742-4787
1528-8897
DOI:10.1115/1.1611503