Physiological responses of the cyanobacterium Synechocystis sp. PCC 6803 under rhythmic light variations
Cyanobacteria are challenged by daily fluctuations of light intensities and photoperiod in their natural habitats, which affect the physiology and fitness of cyanobacteria. Circadian rhythms (CRs), an important endogenous process found in all organisms including cyanobacteria, control their physiolo...
Gespeichert in:
Veröffentlicht in: | Photochemical & photobiological sciences 2023-09, Vol.22 (9), p.2055-2069 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Cyanobacteria are challenged by daily fluctuations of light intensities and photoperiod in their natural habitats, which affect the physiology and fitness of cyanobacteria. Circadian rhythms (CRs), an important endogenous process found in all organisms including cyanobacteria, control their physiological activities and helps in coping with 24-h light/dark (LD) cycle. In cyanobacteria, physiological responses under rhythmic ultraviolet radiation (UVR) are poorly studied. Therefore, we studied the changes in photosynthetic pigments, and physiological parameters of
Synechocystis
sp. PCC 6803 under UVR and photosynthetically active radiation (PAR) of light/dark (LD) oscillations having the combinations of 0, 4:20, 8:16, 12:12, 16:8, 20:4, and 24:24 h. The LD 16:8 enhanced the growth, pigments, proteins, photosynthetic efficiency, and physiology of
Synechocystis
sp. PCC6803. Continuous light (LL 24) of UVR and PAR exerted negative impact on the photosynthetic pigments, and chlorophyll fluorescence. Significant increase in reactive oxygen species (ROS) resulted in loss of plasma membrane integrity followed by decreased viability of cells. The dark phase played a significant role in
Synechocystis
to withstand the LL 24 under PAR and UVR. This study offers detailed understanding of the physiological responses of the cyanobacterium to changing light environment. |
---|---|
ISSN: | 1474-905X 1474-9092 |
DOI: | 10.1007/s43630-023-00429-x |