Proxy modeling approach to evaluate groundwater recharge potentiality zones in the data scarce area of upper Blue Nile Basin, Ethiopia

Prioritization of groundwater recharge potentiality evaluation is critical for sustainable water resources management. Since recharge is a main source for enhancing groundwater availability. Water scarcity is extremely severe in the upper Blue Nile Basin (i.e., Gunabay watershed). Therefore, this st...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Environmental monitoring and assessment 2023-06, Vol.195 (6), p.726-726, Article 726
Hauptverfasser: Tegegne, Asnakew Mulualem, Lohani, Tarun Kumar, Eshete, Abunu Atlabachew
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Prioritization of groundwater recharge potentiality evaluation is critical for sustainable water resources management. Since recharge is a main source for enhancing groundwater availability. Water scarcity is extremely severe in the upper Blue Nile Basin (i.e., Gunabay watershed). Therefore, this study emphasizes groundwater recharge delineating and mapping 3920.25 km 2 in the data-limited area of the upper Blue Basin using proxy modeling (i.e., WetSpass-M model and geodetector model) and tools. The driving/influencing factors are rainfall, temperature, wind speed, evapotranspiration, elevation, slope, land cover, soil, groundwater depth, drainage density, geomorphology, and geology that control the movement of groundwater recharge. However, the first nine factors were used as inputs in the WetSpass-M model to evaluate groundwater recharge. To validate the groundwater recharge availability, water table fluctuation was established based on recorded groundwater levels. Furthermore, the major influencing factors and their interaction have been quantified using geodetector model. Spatiotemporal recharge distribution (in mm) is classified as very low (0–6), low (6–30), moderate (30–51), high (51–83), and very high (83–508) comprising 21%, 20%, 20%, 20%, and 19% of the total area, respectively. Very high groundwater recharge zone has been found in the northwest part of the area. The geodetector results showed that soil (0.841) and temperature (0.287) had larger individual contributions, but the interaction between soil and temperature (0.962) was more significant. It indicates that the interaction between climate and soil has the largest influence on groundwater recharge variability. Generally, the overall approach of this study can be applied to water sectors, policymakers, and decision-makers to overcome future water scarcity.
ISSN:0167-6369
1573-2959
DOI:10.1007/s10661-023-11274-x