Spatial and frequency-selective optical field coupling absorption in an ultra-thin random metasurface
Simplified thin-film structures with the capability of spatial and frequency-selective optical field coupling and absorption are desirable for nanophotonics. Herein, we demonstrate the configuration of a 200-nm-thick random metasurface formed by refractory metal nanoresonators, showing near-unity ab...
Gespeichert in:
Veröffentlicht in: | Optics letters 2023-04, Vol.48 (7), p.1586-1589 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Simplified thin-film structures with the capability of spatial and frequency-selective optical field coupling and absorption are desirable for nanophotonics. Herein, we demonstrate the configuration of a 200-nm-thick random metasurface formed by refractory metal nanoresonators, showing near-unity absorption (absorptivity > 90%) covering the visible and near-infrared range (0.380-1.167 µm). Importantly, the resonant optical field is observed to be concentrated in different spatial areas according to different frequencies, paving a feasible way to artificially manipulate spatial coupling and optical absorption via the spectral frequency. The methods and conclusions derived in this work are applicable throughout a wide energy range and hold applications for frequency-selective nanoscale optical field manipulation. |
---|---|
ISSN: | 0146-9592 1539-4794 |
DOI: | 10.1364/OL.486017 |