A 7000-gate microprocessor on SOS-PULCE
An n-channel MOS LSI microprocessor integrating 20000 transistors on a chip has been realized on a sapphire substrate utilizing the Coplanar-II process. It contains ALU, shifters, and 44 registers which are combined to three 16-bit buses. By utilizing three types of threshold voltage for load transi...
Gespeichert in:
Veröffentlicht in: | IEEE journal of solid-state circuits 1979-04, Vol.14 (2), p.510-517 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | An n-channel MOS LSI microprocessor integrating 20000 transistors on a chip has been realized on a sapphire substrate utilizing the Coplanar-II process. It contains ALU, shifters, and 44 registers which are combined to three 16-bit buses. By utilizing three types of threshold voltage for load transistors, 28-percent reduction in power dissipation is achieved. The minimum cycle time is 200 ns. By using the Coplanar-II process, anomalous leakage currents due to parasitic transistors at the sides of island are suppressed. It is found that the silicon-on-sapphire (SOS) version operates 2.3 times faster than the bulk-silicon version, which is mainly explained by the parasitic capacitance ratio. Parallel-plate approximation in calculating a wiring capacitance results in an underestimate by a factor of 60 compared with taking the two-dimensional effect into account. |
---|---|
ISSN: | 0018-9200 1558-173X |
DOI: | 10.1109/JSSC.1979.1051204 |