Neural network algorithm for detection of erosions and ankylosis on CT of the sacroiliac joints: multicentre development and validation of diagnostic accuracy

Objectives To evaluate the feasibility and diagnostic accuracy of a deep learning network for detection of structural lesions of sacroiliitis on multicentre pelvic CT scans. Methods Pelvic CT scans of 145 patients (81 female, 121 Ghent University/24 Alberta University, 18–87 years old, mean 40 ± 13 ...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:European radiology 2023-11, Vol.33 (11), p.8310-8323
Hauptverfasser: Van Den Berghe, Thomas, Babin, Danilo, Chen, Min, Callens, Martijn, Brack, Denim, Maes, Helena, Lievens, Jan, Lammens, Marie, Van Sumere, Maxime, Morbée, Lieve, Hautekeete, Simon, Schatteman, Stijn, Jacobs, Tom, Thooft, Willem-Jan, Herregods, Nele, Huysse, Wouter, Jaremko, Jacob L., Lambert, Robert, Maksymowych, Walter, Laloo, Frederiek, Baraliakos, Xenofon, De Craemer, Ann-Sophie, Carron, Philippe, Van den Bosch, Filip, Elewaut, Dirk, Jans, Lennart
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 8323
container_issue 11
container_start_page 8310
container_title European radiology
container_volume 33
creator Van Den Berghe, Thomas
Babin, Danilo
Chen, Min
Callens, Martijn
Brack, Denim
Maes, Helena
Lievens, Jan
Lammens, Marie
Van Sumere, Maxime
Morbée, Lieve
Hautekeete, Simon
Schatteman, Stijn
Jacobs, Tom
Thooft, Willem-Jan
Herregods, Nele
Huysse, Wouter
Jaremko, Jacob L.
Lambert, Robert
Maksymowych, Walter
Laloo, Frederiek
Baraliakos, Xenofon
De Craemer, Ann-Sophie
Carron, Philippe
Van den Bosch, Filip
Elewaut, Dirk
Jans, Lennart
description Objectives To evaluate the feasibility and diagnostic accuracy of a deep learning network for detection of structural lesions of sacroiliitis on multicentre pelvic CT scans. Methods Pelvic CT scans of 145 patients (81 female, 121 Ghent University/24 Alberta University, 18–87 years old, mean 40 ± 13 years, 2005–2021) with a clinical suspicion of sacroiliitis were retrospectively included. After manual sacroiliac joint (SIJ) segmentation and structural lesion annotation, a U-Net for SIJ segmentation and two separate convolutional neural networks (CNN) for erosion and ankylosis detection were trained. In-training validation and tenfold validation testing (U-Net— n  = 10 × 58; CNN— n  = 10 × 29) on a test dataset were performed to assess performance on a slice-by-slice and patient level (dice coefficient/accuracy/sensitivity/specificity/positive and negative predictive value/ROC AUC). Patient-level optimisation was applied to increase the performance regarding predefined statistical metrics. Gradient-weighted class activation mapping (Grad-CAM++) heatmap explainability analysis highlighted image parts with statistically important regions for algorithmic decisions. Results Regarding SIJ segmentation, a dice coefficient of 0.75 was obtained in the test dataset. For slice-by-slice structural lesion detection, a sensitivity/specificity/ROC AUC of 95%/89%/0.92 and 93%/91%/0.91 were obtained in the test dataset for erosion and ankylosis detection, respectively. For patient-level lesion detection after pipeline optimisation for predefined statistical metrics, a sensitivity/specificity of 95%/85% and 82%/97% were obtained for erosion and ankylosis detection, respectively. Grad-CAM++  explainability analysis highlighted cortical edges as focus for pipeline decisions. Conclusions An optimised deep learning pipeline, including an explainability analysis, detects structural lesions of sacroiliitis on pelvic CT scans with excellent statistical performance on a slice-by-slice and patient level. Clinical relevance statement An optimised deep learning pipeline, including a robust explainability analysis, detects structural lesions of sacroiliitis on pelvic CT scans with excellent statistical metrics on a slice-by-slice and patient level. Key Points • Structural lesions of sacroiliitis can be detected automatically in pelvic CT scans. • Both automatic segmentation and disease detection yield excellent statistical outcome metrics. • The algorithm takes decisions based on cortic
doi_str_mv 10.1007/s00330-023-09704-y
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2818060686</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2881053715</sourcerecordid><originalsourceid>FETCH-LOGICAL-c419t-7aaeb026238a5f504134f6b207e7033a4ebbde5e9e2bd5c30fa6270cbf16ccd13</originalsourceid><addsrcrecordid>eNp9kc9u1DAQxi1ERUvhBTggS1y4hI7tJE64oRX_pKpcytlynMnWW8debKcoL8Oz4nZbQD1wsDyj-c03o_kIecXgHQOQZwlACKiAiwp6CXW1PiEnrBa8YtDVT_-Jj8nzlHYA0LNaPiPHQnLWt6w_Ib8ucInaUY_5Z4jXVLttiDZfzXQKkY6Y0WQbPA0TxRhSCRPVfizvenUlT7QUN5e39XyFNGkTg3VWG7oL1uf0ns6Ly9agzxGL3g26sJ9Ldqdyo50d9cOA0eqtD6nQVBtT1jLrC3I0aZfw5f1_Sr5_-ni5-VKdf_v8dfPhvDI163MltcYBeMtFp5upgZqJemoHDhJluZGucRhGbLBHPoyNETDplksww8RaY0YmTsnbg-4-hh8Lpqxmmww6pz2GJSnesQ5aaLu2oG8eobuwRF-2K1THoBGSNYXiB6rcI6WIk9pHO-u4Kgbq1j11cE8V99Sde2otTa_vpZdhxvFPy4NdBRAHIJWS32L8O_s_sr8BLg6pYQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2881053715</pqid></control><display><type>article</type><title>Neural network algorithm for detection of erosions and ankylosis on CT of the sacroiliac joints: multicentre development and validation of diagnostic accuracy</title><source>MEDLINE</source><source>SpringerNature Journals</source><creator>Van Den Berghe, Thomas ; Babin, Danilo ; Chen, Min ; Callens, Martijn ; Brack, Denim ; Maes, Helena ; Lievens, Jan ; Lammens, Marie ; Van Sumere, Maxime ; Morbée, Lieve ; Hautekeete, Simon ; Schatteman, Stijn ; Jacobs, Tom ; Thooft, Willem-Jan ; Herregods, Nele ; Huysse, Wouter ; Jaremko, Jacob L. ; Lambert, Robert ; Maksymowych, Walter ; Laloo, Frederiek ; Baraliakos, Xenofon ; De Craemer, Ann-Sophie ; Carron, Philippe ; Van den Bosch, Filip ; Elewaut, Dirk ; Jans, Lennart</creator><creatorcontrib>Van Den Berghe, Thomas ; Babin, Danilo ; Chen, Min ; Callens, Martijn ; Brack, Denim ; Maes, Helena ; Lievens, Jan ; Lammens, Marie ; Van Sumere, Maxime ; Morbée, Lieve ; Hautekeete, Simon ; Schatteman, Stijn ; Jacobs, Tom ; Thooft, Willem-Jan ; Herregods, Nele ; Huysse, Wouter ; Jaremko, Jacob L. ; Lambert, Robert ; Maksymowych, Walter ; Laloo, Frederiek ; Baraliakos, Xenofon ; De Craemer, Ann-Sophie ; Carron, Philippe ; Van den Bosch, Filip ; Elewaut, Dirk ; Jans, Lennart</creatorcontrib><description>Objectives To evaluate the feasibility and diagnostic accuracy of a deep learning network for detection of structural lesions of sacroiliitis on multicentre pelvic CT scans. Methods Pelvic CT scans of 145 patients (81 female, 121 Ghent University/24 Alberta University, 18–87 years old, mean 40 ± 13 years, 2005–2021) with a clinical suspicion of sacroiliitis were retrospectively included. After manual sacroiliac joint (SIJ) segmentation and structural lesion annotation, a U-Net for SIJ segmentation and two separate convolutional neural networks (CNN) for erosion and ankylosis detection were trained. In-training validation and tenfold validation testing (U-Net— n  = 10 × 58; CNN— n  = 10 × 29) on a test dataset were performed to assess performance on a slice-by-slice and patient level (dice coefficient/accuracy/sensitivity/specificity/positive and negative predictive value/ROC AUC). Patient-level optimisation was applied to increase the performance regarding predefined statistical metrics. Gradient-weighted class activation mapping (Grad-CAM++) heatmap explainability analysis highlighted image parts with statistically important regions for algorithmic decisions. Results Regarding SIJ segmentation, a dice coefficient of 0.75 was obtained in the test dataset. For slice-by-slice structural lesion detection, a sensitivity/specificity/ROC AUC of 95%/89%/0.92 and 93%/91%/0.91 were obtained in the test dataset for erosion and ankylosis detection, respectively. For patient-level lesion detection after pipeline optimisation for predefined statistical metrics, a sensitivity/specificity of 95%/85% and 82%/97% were obtained for erosion and ankylosis detection, respectively. Grad-CAM++  explainability analysis highlighted cortical edges as focus for pipeline decisions. Conclusions An optimised deep learning pipeline, including an explainability analysis, detects structural lesions of sacroiliitis on pelvic CT scans with excellent statistical performance on a slice-by-slice and patient level. Clinical relevance statement An optimised deep learning pipeline, including a robust explainability analysis, detects structural lesions of sacroiliitis on pelvic CT scans with excellent statistical metrics on a slice-by-slice and patient level. Key Points • Structural lesions of sacroiliitis can be detected automatically in pelvic CT scans. • Both automatic segmentation and disease detection yield excellent statistical outcome metrics. • The algorithm takes decisions based on cortical edges, rendering an explainable solution.</description><identifier>ISSN: 1432-1084</identifier><identifier>ISSN: 0938-7994</identifier><identifier>EISSN: 1432-1084</identifier><identifier>DOI: 10.1007/s00330-023-09704-y</identifier><identifier>PMID: 37219619</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Accuracy ; Adolescent ; Adult ; Aged ; Aged, 80 and over ; Algorithms ; Ankylosis ; Ankylosis - diagnostic imaging ; Ankylosis - pathology ; Annotations ; Artificial neural networks ; Computed tomography ; Datasets ; Decision analysis ; Deep learning ; Diagnostic Radiology ; Diagnostic systems ; Disease detection ; Female ; Humans ; Image processing ; Image segmentation ; Imaging ; Internal Medicine ; Interventional Radiology ; Lesions ; Machine learning ; Medical diagnosis ; Medical imaging ; Medicine ; Medicine &amp; Public Health ; Middle Aged ; Musculoskeletal ; Neural networks ; Neural Networks, Computer ; Neuroradiology ; Optimization ; Performance assessment ; Radiology ; Retrospective Studies ; Sacroiliac Joint - diagnostic imaging ; Sacroiliac Joint - pathology ; Sacroiliitis ; Sacroiliitis - pathology ; Segmentation ; Statistical analysis ; Statistics ; Tomography, X-Ray Computed - methods ; Ultrasound ; Young Adult</subject><ispartof>European radiology, 2023-11, Vol.33 (11), p.8310-8323</ispartof><rights>The Author(s), under exclusive licence to European Society of Radiology 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>2023. The Author(s), under exclusive licence to European Society of Radiology.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c419t-7aaeb026238a5f504134f6b207e7033a4ebbde5e9e2bd5c30fa6270cbf16ccd13</citedby><cites>FETCH-LOGICAL-c419t-7aaeb026238a5f504134f6b207e7033a4ebbde5e9e2bd5c30fa6270cbf16ccd13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00330-023-09704-y$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00330-023-09704-y$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>315,782,786,27933,27934,41497,42566,51328</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37219619$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Van Den Berghe, Thomas</creatorcontrib><creatorcontrib>Babin, Danilo</creatorcontrib><creatorcontrib>Chen, Min</creatorcontrib><creatorcontrib>Callens, Martijn</creatorcontrib><creatorcontrib>Brack, Denim</creatorcontrib><creatorcontrib>Maes, Helena</creatorcontrib><creatorcontrib>Lievens, Jan</creatorcontrib><creatorcontrib>Lammens, Marie</creatorcontrib><creatorcontrib>Van Sumere, Maxime</creatorcontrib><creatorcontrib>Morbée, Lieve</creatorcontrib><creatorcontrib>Hautekeete, Simon</creatorcontrib><creatorcontrib>Schatteman, Stijn</creatorcontrib><creatorcontrib>Jacobs, Tom</creatorcontrib><creatorcontrib>Thooft, Willem-Jan</creatorcontrib><creatorcontrib>Herregods, Nele</creatorcontrib><creatorcontrib>Huysse, Wouter</creatorcontrib><creatorcontrib>Jaremko, Jacob L.</creatorcontrib><creatorcontrib>Lambert, Robert</creatorcontrib><creatorcontrib>Maksymowych, Walter</creatorcontrib><creatorcontrib>Laloo, Frederiek</creatorcontrib><creatorcontrib>Baraliakos, Xenofon</creatorcontrib><creatorcontrib>De Craemer, Ann-Sophie</creatorcontrib><creatorcontrib>Carron, Philippe</creatorcontrib><creatorcontrib>Van den Bosch, Filip</creatorcontrib><creatorcontrib>Elewaut, Dirk</creatorcontrib><creatorcontrib>Jans, Lennart</creatorcontrib><title>Neural network algorithm for detection of erosions and ankylosis on CT of the sacroiliac joints: multicentre development and validation of diagnostic accuracy</title><title>European radiology</title><addtitle>Eur Radiol</addtitle><addtitle>Eur Radiol</addtitle><description>Objectives To evaluate the feasibility and diagnostic accuracy of a deep learning network for detection of structural lesions of sacroiliitis on multicentre pelvic CT scans. Methods Pelvic CT scans of 145 patients (81 female, 121 Ghent University/24 Alberta University, 18–87 years old, mean 40 ± 13 years, 2005–2021) with a clinical suspicion of sacroiliitis were retrospectively included. After manual sacroiliac joint (SIJ) segmentation and structural lesion annotation, a U-Net for SIJ segmentation and two separate convolutional neural networks (CNN) for erosion and ankylosis detection were trained. In-training validation and tenfold validation testing (U-Net— n  = 10 × 58; CNN— n  = 10 × 29) on a test dataset were performed to assess performance on a slice-by-slice and patient level (dice coefficient/accuracy/sensitivity/specificity/positive and negative predictive value/ROC AUC). Patient-level optimisation was applied to increase the performance regarding predefined statistical metrics. Gradient-weighted class activation mapping (Grad-CAM++) heatmap explainability analysis highlighted image parts with statistically important regions for algorithmic decisions. Results Regarding SIJ segmentation, a dice coefficient of 0.75 was obtained in the test dataset. For slice-by-slice structural lesion detection, a sensitivity/specificity/ROC AUC of 95%/89%/0.92 and 93%/91%/0.91 were obtained in the test dataset for erosion and ankylosis detection, respectively. For patient-level lesion detection after pipeline optimisation for predefined statistical metrics, a sensitivity/specificity of 95%/85% and 82%/97% were obtained for erosion and ankylosis detection, respectively. Grad-CAM++  explainability analysis highlighted cortical edges as focus for pipeline decisions. Conclusions An optimised deep learning pipeline, including an explainability analysis, detects structural lesions of sacroiliitis on pelvic CT scans with excellent statistical performance on a slice-by-slice and patient level. Clinical relevance statement An optimised deep learning pipeline, including a robust explainability analysis, detects structural lesions of sacroiliitis on pelvic CT scans with excellent statistical metrics on a slice-by-slice and patient level. Key Points • Structural lesions of sacroiliitis can be detected automatically in pelvic CT scans. • Both automatic segmentation and disease detection yield excellent statistical outcome metrics. • The algorithm takes decisions based on cortical edges, rendering an explainable solution.</description><subject>Accuracy</subject><subject>Adolescent</subject><subject>Adult</subject><subject>Aged</subject><subject>Aged, 80 and over</subject><subject>Algorithms</subject><subject>Ankylosis</subject><subject>Ankylosis - diagnostic imaging</subject><subject>Ankylosis - pathology</subject><subject>Annotations</subject><subject>Artificial neural networks</subject><subject>Computed tomography</subject><subject>Datasets</subject><subject>Decision analysis</subject><subject>Deep learning</subject><subject>Diagnostic Radiology</subject><subject>Diagnostic systems</subject><subject>Disease detection</subject><subject>Female</subject><subject>Humans</subject><subject>Image processing</subject><subject>Image segmentation</subject><subject>Imaging</subject><subject>Internal Medicine</subject><subject>Interventional Radiology</subject><subject>Lesions</subject><subject>Machine learning</subject><subject>Medical diagnosis</subject><subject>Medical imaging</subject><subject>Medicine</subject><subject>Medicine &amp; Public Health</subject><subject>Middle Aged</subject><subject>Musculoskeletal</subject><subject>Neural networks</subject><subject>Neural Networks, Computer</subject><subject>Neuroradiology</subject><subject>Optimization</subject><subject>Performance assessment</subject><subject>Radiology</subject><subject>Retrospective Studies</subject><subject>Sacroiliac Joint - diagnostic imaging</subject><subject>Sacroiliac Joint - pathology</subject><subject>Sacroiliitis</subject><subject>Sacroiliitis - pathology</subject><subject>Segmentation</subject><subject>Statistical analysis</subject><subject>Statistics</subject><subject>Tomography, X-Ray Computed - methods</subject><subject>Ultrasound</subject><subject>Young Adult</subject><issn>1432-1084</issn><issn>0938-7994</issn><issn>1432-1084</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kc9u1DAQxi1ERUvhBTggS1y4hI7tJE64oRX_pKpcytlynMnWW8debKcoL8Oz4nZbQD1wsDyj-c03o_kIecXgHQOQZwlACKiAiwp6CXW1PiEnrBa8YtDVT_-Jj8nzlHYA0LNaPiPHQnLWt6w_Ib8ucInaUY_5Z4jXVLttiDZfzXQKkY6Y0WQbPA0TxRhSCRPVfizvenUlT7QUN5e39XyFNGkTg3VWG7oL1uf0ns6Ly9agzxGL3g26sJ9Ldqdyo50d9cOA0eqtD6nQVBtT1jLrC3I0aZfw5f1_Sr5_-ni5-VKdf_v8dfPhvDI163MltcYBeMtFp5upgZqJemoHDhJluZGucRhGbLBHPoyNETDplksww8RaY0YmTsnbg-4-hh8Lpqxmmww6pz2GJSnesQ5aaLu2oG8eobuwRF-2K1THoBGSNYXiB6rcI6WIk9pHO-u4Kgbq1j11cE8V99Sde2otTa_vpZdhxvFPy4NdBRAHIJWS32L8O_s_sr8BLg6pYQ</recordid><startdate>20231101</startdate><enddate>20231101</enddate><creator>Van Den Berghe, Thomas</creator><creator>Babin, Danilo</creator><creator>Chen, Min</creator><creator>Callens, Martijn</creator><creator>Brack, Denim</creator><creator>Maes, Helena</creator><creator>Lievens, Jan</creator><creator>Lammens, Marie</creator><creator>Van Sumere, Maxime</creator><creator>Morbée, Lieve</creator><creator>Hautekeete, Simon</creator><creator>Schatteman, Stijn</creator><creator>Jacobs, Tom</creator><creator>Thooft, Willem-Jan</creator><creator>Herregods, Nele</creator><creator>Huysse, Wouter</creator><creator>Jaremko, Jacob L.</creator><creator>Lambert, Robert</creator><creator>Maksymowych, Walter</creator><creator>Laloo, Frederiek</creator><creator>Baraliakos, Xenofon</creator><creator>De Craemer, Ann-Sophie</creator><creator>Carron, Philippe</creator><creator>Van den Bosch, Filip</creator><creator>Elewaut, Dirk</creator><creator>Jans, Lennart</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QO</scope><scope>7RV</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB0</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7X8</scope></search><sort><creationdate>20231101</creationdate><title>Neural network algorithm for detection of erosions and ankylosis on CT of the sacroiliac joints: multicentre development and validation of diagnostic accuracy</title><author>Van Den Berghe, Thomas ; Babin, Danilo ; Chen, Min ; Callens, Martijn ; Brack, Denim ; Maes, Helena ; Lievens, Jan ; Lammens, Marie ; Van Sumere, Maxime ; Morbée, Lieve ; Hautekeete, Simon ; Schatteman, Stijn ; Jacobs, Tom ; Thooft, Willem-Jan ; Herregods, Nele ; Huysse, Wouter ; Jaremko, Jacob L. ; Lambert, Robert ; Maksymowych, Walter ; Laloo, Frederiek ; Baraliakos, Xenofon ; De Craemer, Ann-Sophie ; Carron, Philippe ; Van den Bosch, Filip ; Elewaut, Dirk ; Jans, Lennart</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c419t-7aaeb026238a5f504134f6b207e7033a4ebbde5e9e2bd5c30fa6270cbf16ccd13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Accuracy</topic><topic>Adolescent</topic><topic>Adult</topic><topic>Aged</topic><topic>Aged, 80 and over</topic><topic>Algorithms</topic><topic>Ankylosis</topic><topic>Ankylosis - diagnostic imaging</topic><topic>Ankylosis - pathology</topic><topic>Annotations</topic><topic>Artificial neural networks</topic><topic>Computed tomography</topic><topic>Datasets</topic><topic>Decision analysis</topic><topic>Deep learning</topic><topic>Diagnostic Radiology</topic><topic>Diagnostic systems</topic><topic>Disease detection</topic><topic>Female</topic><topic>Humans</topic><topic>Image processing</topic><topic>Image segmentation</topic><topic>Imaging</topic><topic>Internal Medicine</topic><topic>Interventional Radiology</topic><topic>Lesions</topic><topic>Machine learning</topic><topic>Medical diagnosis</topic><topic>Medical imaging</topic><topic>Medicine</topic><topic>Medicine &amp; Public Health</topic><topic>Middle Aged</topic><topic>Musculoskeletal</topic><topic>Neural networks</topic><topic>Neural Networks, Computer</topic><topic>Neuroradiology</topic><topic>Optimization</topic><topic>Performance assessment</topic><topic>Radiology</topic><topic>Retrospective Studies</topic><topic>Sacroiliac Joint - diagnostic imaging</topic><topic>Sacroiliac Joint - pathology</topic><topic>Sacroiliitis</topic><topic>Sacroiliitis - pathology</topic><topic>Segmentation</topic><topic>Statistical analysis</topic><topic>Statistics</topic><topic>Tomography, X-Ray Computed - methods</topic><topic>Ultrasound</topic><topic>Young Adult</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Van Den Berghe, Thomas</creatorcontrib><creatorcontrib>Babin, Danilo</creatorcontrib><creatorcontrib>Chen, Min</creatorcontrib><creatorcontrib>Callens, Martijn</creatorcontrib><creatorcontrib>Brack, Denim</creatorcontrib><creatorcontrib>Maes, Helena</creatorcontrib><creatorcontrib>Lievens, Jan</creatorcontrib><creatorcontrib>Lammens, Marie</creatorcontrib><creatorcontrib>Van Sumere, Maxime</creatorcontrib><creatorcontrib>Morbée, Lieve</creatorcontrib><creatorcontrib>Hautekeete, Simon</creatorcontrib><creatorcontrib>Schatteman, Stijn</creatorcontrib><creatorcontrib>Jacobs, Tom</creatorcontrib><creatorcontrib>Thooft, Willem-Jan</creatorcontrib><creatorcontrib>Herregods, Nele</creatorcontrib><creatorcontrib>Huysse, Wouter</creatorcontrib><creatorcontrib>Jaremko, Jacob L.</creatorcontrib><creatorcontrib>Lambert, Robert</creatorcontrib><creatorcontrib>Maksymowych, Walter</creatorcontrib><creatorcontrib>Laloo, Frederiek</creatorcontrib><creatorcontrib>Baraliakos, Xenofon</creatorcontrib><creatorcontrib>De Craemer, Ann-Sophie</creatorcontrib><creatorcontrib>Carron, Philippe</creatorcontrib><creatorcontrib>Van den Bosch, Filip</creatorcontrib><creatorcontrib>Elewaut, Dirk</creatorcontrib><creatorcontrib>Jans, Lennart</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>MEDLINE - Academic</collection><jtitle>European radiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Van Den Berghe, Thomas</au><au>Babin, Danilo</au><au>Chen, Min</au><au>Callens, Martijn</au><au>Brack, Denim</au><au>Maes, Helena</au><au>Lievens, Jan</au><au>Lammens, Marie</au><au>Van Sumere, Maxime</au><au>Morbée, Lieve</au><au>Hautekeete, Simon</au><au>Schatteman, Stijn</au><au>Jacobs, Tom</au><au>Thooft, Willem-Jan</au><au>Herregods, Nele</au><au>Huysse, Wouter</au><au>Jaremko, Jacob L.</au><au>Lambert, Robert</au><au>Maksymowych, Walter</au><au>Laloo, Frederiek</au><au>Baraliakos, Xenofon</au><au>De Craemer, Ann-Sophie</au><au>Carron, Philippe</au><au>Van den Bosch, Filip</au><au>Elewaut, Dirk</au><au>Jans, Lennart</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Neural network algorithm for detection of erosions and ankylosis on CT of the sacroiliac joints: multicentre development and validation of diagnostic accuracy</atitle><jtitle>European radiology</jtitle><stitle>Eur Radiol</stitle><addtitle>Eur Radiol</addtitle><date>2023-11-01</date><risdate>2023</risdate><volume>33</volume><issue>11</issue><spage>8310</spage><epage>8323</epage><pages>8310-8323</pages><issn>1432-1084</issn><issn>0938-7994</issn><eissn>1432-1084</eissn><abstract>Objectives To evaluate the feasibility and diagnostic accuracy of a deep learning network for detection of structural lesions of sacroiliitis on multicentre pelvic CT scans. Methods Pelvic CT scans of 145 patients (81 female, 121 Ghent University/24 Alberta University, 18–87 years old, mean 40 ± 13 years, 2005–2021) with a clinical suspicion of sacroiliitis were retrospectively included. After manual sacroiliac joint (SIJ) segmentation and structural lesion annotation, a U-Net for SIJ segmentation and two separate convolutional neural networks (CNN) for erosion and ankylosis detection were trained. In-training validation and tenfold validation testing (U-Net— n  = 10 × 58; CNN— n  = 10 × 29) on a test dataset were performed to assess performance on a slice-by-slice and patient level (dice coefficient/accuracy/sensitivity/specificity/positive and negative predictive value/ROC AUC). Patient-level optimisation was applied to increase the performance regarding predefined statistical metrics. Gradient-weighted class activation mapping (Grad-CAM++) heatmap explainability analysis highlighted image parts with statistically important regions for algorithmic decisions. Results Regarding SIJ segmentation, a dice coefficient of 0.75 was obtained in the test dataset. For slice-by-slice structural lesion detection, a sensitivity/specificity/ROC AUC of 95%/89%/0.92 and 93%/91%/0.91 were obtained in the test dataset for erosion and ankylosis detection, respectively. For patient-level lesion detection after pipeline optimisation for predefined statistical metrics, a sensitivity/specificity of 95%/85% and 82%/97% were obtained for erosion and ankylosis detection, respectively. Grad-CAM++  explainability analysis highlighted cortical edges as focus for pipeline decisions. Conclusions An optimised deep learning pipeline, including an explainability analysis, detects structural lesions of sacroiliitis on pelvic CT scans with excellent statistical performance on a slice-by-slice and patient level. Clinical relevance statement An optimised deep learning pipeline, including a robust explainability analysis, detects structural lesions of sacroiliitis on pelvic CT scans with excellent statistical metrics on a slice-by-slice and patient level. Key Points • Structural lesions of sacroiliitis can be detected automatically in pelvic CT scans. • Both automatic segmentation and disease detection yield excellent statistical outcome metrics. • The algorithm takes decisions based on cortical edges, rendering an explainable solution.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>37219619</pmid><doi>10.1007/s00330-023-09704-y</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1432-1084
ispartof European radiology, 2023-11, Vol.33 (11), p.8310-8323
issn 1432-1084
0938-7994
1432-1084
language eng
recordid cdi_proquest_miscellaneous_2818060686
source MEDLINE; SpringerNature Journals
subjects Accuracy
Adolescent
Adult
Aged
Aged, 80 and over
Algorithms
Ankylosis
Ankylosis - diagnostic imaging
Ankylosis - pathology
Annotations
Artificial neural networks
Computed tomography
Datasets
Decision analysis
Deep learning
Diagnostic Radiology
Diagnostic systems
Disease detection
Female
Humans
Image processing
Image segmentation
Imaging
Internal Medicine
Interventional Radiology
Lesions
Machine learning
Medical diagnosis
Medical imaging
Medicine
Medicine & Public Health
Middle Aged
Musculoskeletal
Neural networks
Neural Networks, Computer
Neuroradiology
Optimization
Performance assessment
Radiology
Retrospective Studies
Sacroiliac Joint - diagnostic imaging
Sacroiliac Joint - pathology
Sacroiliitis
Sacroiliitis - pathology
Segmentation
Statistical analysis
Statistics
Tomography, X-Ray Computed - methods
Ultrasound
Young Adult
title Neural network algorithm for detection of erosions and ankylosis on CT of the sacroiliac joints: multicentre development and validation of diagnostic accuracy
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-03T03%3A09%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Neural%20network%20algorithm%20for%20detection%20of%20erosions%20and%20ankylosis%20on%20CT%20of%20the%20sacroiliac%20joints:%20multicentre%20development%20and%20validation%20of%20diagnostic%20accuracy&rft.jtitle=European%20radiology&rft.au=Van%20Den%20Berghe,%20Thomas&rft.date=2023-11-01&rft.volume=33&rft.issue=11&rft.spage=8310&rft.epage=8323&rft.pages=8310-8323&rft.issn=1432-1084&rft.eissn=1432-1084&rft_id=info:doi/10.1007/s00330-023-09704-y&rft_dat=%3Cproquest_cross%3E2881053715%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2881053715&rft_id=info:pmid/37219619&rfr_iscdi=true