Neural network algorithm for detection of erosions and ankylosis on CT of the sacroiliac joints: multicentre development and validation of diagnostic accuracy
Objectives To evaluate the feasibility and diagnostic accuracy of a deep learning network for detection of structural lesions of sacroiliitis on multicentre pelvic CT scans. Methods Pelvic CT scans of 145 patients (81 female, 121 Ghent University/24 Alberta University, 18–87 years old, mean 40 ± 13 ...
Gespeichert in:
Veröffentlicht in: | European radiology 2023-11, Vol.33 (11), p.8310-8323 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 8323 |
---|---|
container_issue | 11 |
container_start_page | 8310 |
container_title | European radiology |
container_volume | 33 |
creator | Van Den Berghe, Thomas Babin, Danilo Chen, Min Callens, Martijn Brack, Denim Maes, Helena Lievens, Jan Lammens, Marie Van Sumere, Maxime Morbée, Lieve Hautekeete, Simon Schatteman, Stijn Jacobs, Tom Thooft, Willem-Jan Herregods, Nele Huysse, Wouter Jaremko, Jacob L. Lambert, Robert Maksymowych, Walter Laloo, Frederiek Baraliakos, Xenofon De Craemer, Ann-Sophie Carron, Philippe Van den Bosch, Filip Elewaut, Dirk Jans, Lennart |
description | Objectives
To evaluate the feasibility and diagnostic accuracy of a deep learning network for detection of structural lesions of sacroiliitis on multicentre pelvic CT scans.
Methods
Pelvic CT scans of 145 patients (81 female, 121 Ghent University/24 Alberta University, 18–87 years old, mean 40 ± 13 years, 2005–2021) with a clinical suspicion of sacroiliitis were retrospectively included. After manual sacroiliac joint (SIJ) segmentation and structural lesion annotation, a U-Net for SIJ segmentation and two separate convolutional neural networks (CNN) for erosion and ankylosis detection were trained. In-training validation and tenfold validation testing (U-Net—
n
= 10 × 58; CNN—
n
= 10 × 29) on a test dataset were performed to assess performance on a slice-by-slice and patient level (dice coefficient/accuracy/sensitivity/specificity/positive and negative predictive value/ROC AUC). Patient-level optimisation was applied to increase the performance regarding predefined statistical metrics. Gradient-weighted class activation mapping (Grad-CAM++) heatmap explainability analysis highlighted image parts with statistically important regions for algorithmic decisions.
Results
Regarding SIJ segmentation, a dice coefficient of 0.75 was obtained in the test dataset. For slice-by-slice structural lesion detection, a sensitivity/specificity/ROC AUC of 95%/89%/0.92 and 93%/91%/0.91 were obtained in the test dataset for erosion and ankylosis detection, respectively. For patient-level lesion detection after pipeline optimisation for predefined statistical metrics, a sensitivity/specificity of 95%/85% and 82%/97% were obtained for erosion and ankylosis detection, respectively. Grad-CAM++ explainability analysis highlighted cortical edges as focus for pipeline decisions.
Conclusions
An optimised deep learning pipeline, including an explainability analysis, detects structural lesions of sacroiliitis on pelvic CT scans with excellent statistical performance on a slice-by-slice and patient level.
Clinical relevance statement
An optimised deep learning pipeline, including a robust explainability analysis, detects structural lesions of sacroiliitis on pelvic CT scans with excellent statistical metrics on a slice-by-slice and patient level.
Key Points
•
Structural lesions of sacroiliitis can be detected automatically in pelvic CT scans.
•
Both automatic segmentation and disease detection yield excellent statistical outcome metrics.
•
The algorithm takes decisions based on cortic |
doi_str_mv | 10.1007/s00330-023-09704-y |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2818060686</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2881053715</sourcerecordid><originalsourceid>FETCH-LOGICAL-c419t-7aaeb026238a5f504134f6b207e7033a4ebbde5e9e2bd5c30fa6270cbf16ccd13</originalsourceid><addsrcrecordid>eNp9kc9u1DAQxi1ERUvhBTggS1y4hI7tJE64oRX_pKpcytlynMnWW8debKcoL8Oz4nZbQD1wsDyj-c03o_kIecXgHQOQZwlACKiAiwp6CXW1PiEnrBa8YtDVT_-Jj8nzlHYA0LNaPiPHQnLWt6w_Ib8ucInaUY_5Z4jXVLttiDZfzXQKkY6Y0WQbPA0TxRhSCRPVfizvenUlT7QUN5e39XyFNGkTg3VWG7oL1uf0ns6Ly9agzxGL3g26sJ9Ldqdyo50d9cOA0eqtD6nQVBtT1jLrC3I0aZfw5f1_Sr5_-ni5-VKdf_v8dfPhvDI163MltcYBeMtFp5upgZqJemoHDhJluZGucRhGbLBHPoyNETDplksww8RaY0YmTsnbg-4-hh8Lpqxmmww6pz2GJSnesQ5aaLu2oG8eobuwRF-2K1THoBGSNYXiB6rcI6WIk9pHO-u4Kgbq1j11cE8V99Sde2otTa_vpZdhxvFPy4NdBRAHIJWS32L8O_s_sr8BLg6pYQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2881053715</pqid></control><display><type>article</type><title>Neural network algorithm for detection of erosions and ankylosis on CT of the sacroiliac joints: multicentre development and validation of diagnostic accuracy</title><source>MEDLINE</source><source>SpringerNature Journals</source><creator>Van Den Berghe, Thomas ; Babin, Danilo ; Chen, Min ; Callens, Martijn ; Brack, Denim ; Maes, Helena ; Lievens, Jan ; Lammens, Marie ; Van Sumere, Maxime ; Morbée, Lieve ; Hautekeete, Simon ; Schatteman, Stijn ; Jacobs, Tom ; Thooft, Willem-Jan ; Herregods, Nele ; Huysse, Wouter ; Jaremko, Jacob L. ; Lambert, Robert ; Maksymowych, Walter ; Laloo, Frederiek ; Baraliakos, Xenofon ; De Craemer, Ann-Sophie ; Carron, Philippe ; Van den Bosch, Filip ; Elewaut, Dirk ; Jans, Lennart</creator><creatorcontrib>Van Den Berghe, Thomas ; Babin, Danilo ; Chen, Min ; Callens, Martijn ; Brack, Denim ; Maes, Helena ; Lievens, Jan ; Lammens, Marie ; Van Sumere, Maxime ; Morbée, Lieve ; Hautekeete, Simon ; Schatteman, Stijn ; Jacobs, Tom ; Thooft, Willem-Jan ; Herregods, Nele ; Huysse, Wouter ; Jaremko, Jacob L. ; Lambert, Robert ; Maksymowych, Walter ; Laloo, Frederiek ; Baraliakos, Xenofon ; De Craemer, Ann-Sophie ; Carron, Philippe ; Van den Bosch, Filip ; Elewaut, Dirk ; Jans, Lennart</creatorcontrib><description>Objectives
To evaluate the feasibility and diagnostic accuracy of a deep learning network for detection of structural lesions of sacroiliitis on multicentre pelvic CT scans.
Methods
Pelvic CT scans of 145 patients (81 female, 121 Ghent University/24 Alberta University, 18–87 years old, mean 40 ± 13 years, 2005–2021) with a clinical suspicion of sacroiliitis were retrospectively included. After manual sacroiliac joint (SIJ) segmentation and structural lesion annotation, a U-Net for SIJ segmentation and two separate convolutional neural networks (CNN) for erosion and ankylosis detection were trained. In-training validation and tenfold validation testing (U-Net—
n
= 10 × 58; CNN—
n
= 10 × 29) on a test dataset were performed to assess performance on a slice-by-slice and patient level (dice coefficient/accuracy/sensitivity/specificity/positive and negative predictive value/ROC AUC). Patient-level optimisation was applied to increase the performance regarding predefined statistical metrics. Gradient-weighted class activation mapping (Grad-CAM++) heatmap explainability analysis highlighted image parts with statistically important regions for algorithmic decisions.
Results
Regarding SIJ segmentation, a dice coefficient of 0.75 was obtained in the test dataset. For slice-by-slice structural lesion detection, a sensitivity/specificity/ROC AUC of 95%/89%/0.92 and 93%/91%/0.91 were obtained in the test dataset for erosion and ankylosis detection, respectively. For patient-level lesion detection after pipeline optimisation for predefined statistical metrics, a sensitivity/specificity of 95%/85% and 82%/97% were obtained for erosion and ankylosis detection, respectively. Grad-CAM++ explainability analysis highlighted cortical edges as focus for pipeline decisions.
Conclusions
An optimised deep learning pipeline, including an explainability analysis, detects structural lesions of sacroiliitis on pelvic CT scans with excellent statistical performance on a slice-by-slice and patient level.
Clinical relevance statement
An optimised deep learning pipeline, including a robust explainability analysis, detects structural lesions of sacroiliitis on pelvic CT scans with excellent statistical metrics on a slice-by-slice and patient level.
Key Points
•
Structural lesions of sacroiliitis can be detected automatically in pelvic CT scans.
•
Both automatic segmentation and disease detection yield excellent statistical outcome metrics.
•
The algorithm takes decisions based on cortical edges, rendering an explainable solution.</description><identifier>ISSN: 1432-1084</identifier><identifier>ISSN: 0938-7994</identifier><identifier>EISSN: 1432-1084</identifier><identifier>DOI: 10.1007/s00330-023-09704-y</identifier><identifier>PMID: 37219619</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Accuracy ; Adolescent ; Adult ; Aged ; Aged, 80 and over ; Algorithms ; Ankylosis ; Ankylosis - diagnostic imaging ; Ankylosis - pathology ; Annotations ; Artificial neural networks ; Computed tomography ; Datasets ; Decision analysis ; Deep learning ; Diagnostic Radiology ; Diagnostic systems ; Disease detection ; Female ; Humans ; Image processing ; Image segmentation ; Imaging ; Internal Medicine ; Interventional Radiology ; Lesions ; Machine learning ; Medical diagnosis ; Medical imaging ; Medicine ; Medicine & Public Health ; Middle Aged ; Musculoskeletal ; Neural networks ; Neural Networks, Computer ; Neuroradiology ; Optimization ; Performance assessment ; Radiology ; Retrospective Studies ; Sacroiliac Joint - diagnostic imaging ; Sacroiliac Joint - pathology ; Sacroiliitis ; Sacroiliitis - pathology ; Segmentation ; Statistical analysis ; Statistics ; Tomography, X-Ray Computed - methods ; Ultrasound ; Young Adult</subject><ispartof>European radiology, 2023-11, Vol.33 (11), p.8310-8323</ispartof><rights>The Author(s), under exclusive licence to European Society of Radiology 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>2023. The Author(s), under exclusive licence to European Society of Radiology.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c419t-7aaeb026238a5f504134f6b207e7033a4ebbde5e9e2bd5c30fa6270cbf16ccd13</citedby><cites>FETCH-LOGICAL-c419t-7aaeb026238a5f504134f6b207e7033a4ebbde5e9e2bd5c30fa6270cbf16ccd13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00330-023-09704-y$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00330-023-09704-y$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>315,782,786,27933,27934,41497,42566,51328</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37219619$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Van Den Berghe, Thomas</creatorcontrib><creatorcontrib>Babin, Danilo</creatorcontrib><creatorcontrib>Chen, Min</creatorcontrib><creatorcontrib>Callens, Martijn</creatorcontrib><creatorcontrib>Brack, Denim</creatorcontrib><creatorcontrib>Maes, Helena</creatorcontrib><creatorcontrib>Lievens, Jan</creatorcontrib><creatorcontrib>Lammens, Marie</creatorcontrib><creatorcontrib>Van Sumere, Maxime</creatorcontrib><creatorcontrib>Morbée, Lieve</creatorcontrib><creatorcontrib>Hautekeete, Simon</creatorcontrib><creatorcontrib>Schatteman, Stijn</creatorcontrib><creatorcontrib>Jacobs, Tom</creatorcontrib><creatorcontrib>Thooft, Willem-Jan</creatorcontrib><creatorcontrib>Herregods, Nele</creatorcontrib><creatorcontrib>Huysse, Wouter</creatorcontrib><creatorcontrib>Jaremko, Jacob L.</creatorcontrib><creatorcontrib>Lambert, Robert</creatorcontrib><creatorcontrib>Maksymowych, Walter</creatorcontrib><creatorcontrib>Laloo, Frederiek</creatorcontrib><creatorcontrib>Baraliakos, Xenofon</creatorcontrib><creatorcontrib>De Craemer, Ann-Sophie</creatorcontrib><creatorcontrib>Carron, Philippe</creatorcontrib><creatorcontrib>Van den Bosch, Filip</creatorcontrib><creatorcontrib>Elewaut, Dirk</creatorcontrib><creatorcontrib>Jans, Lennart</creatorcontrib><title>Neural network algorithm for detection of erosions and ankylosis on CT of the sacroiliac joints: multicentre development and validation of diagnostic accuracy</title><title>European radiology</title><addtitle>Eur Radiol</addtitle><addtitle>Eur Radiol</addtitle><description>Objectives
To evaluate the feasibility and diagnostic accuracy of a deep learning network for detection of structural lesions of sacroiliitis on multicentre pelvic CT scans.
Methods
Pelvic CT scans of 145 patients (81 female, 121 Ghent University/24 Alberta University, 18–87 years old, mean 40 ± 13 years, 2005–2021) with a clinical suspicion of sacroiliitis were retrospectively included. After manual sacroiliac joint (SIJ) segmentation and structural lesion annotation, a U-Net for SIJ segmentation and two separate convolutional neural networks (CNN) for erosion and ankylosis detection were trained. In-training validation and tenfold validation testing (U-Net—
n
= 10 × 58; CNN—
n
= 10 × 29) on a test dataset were performed to assess performance on a slice-by-slice and patient level (dice coefficient/accuracy/sensitivity/specificity/positive and negative predictive value/ROC AUC). Patient-level optimisation was applied to increase the performance regarding predefined statistical metrics. Gradient-weighted class activation mapping (Grad-CAM++) heatmap explainability analysis highlighted image parts with statistically important regions for algorithmic decisions.
Results
Regarding SIJ segmentation, a dice coefficient of 0.75 was obtained in the test dataset. For slice-by-slice structural lesion detection, a sensitivity/specificity/ROC AUC of 95%/89%/0.92 and 93%/91%/0.91 were obtained in the test dataset for erosion and ankylosis detection, respectively. For patient-level lesion detection after pipeline optimisation for predefined statistical metrics, a sensitivity/specificity of 95%/85% and 82%/97% were obtained for erosion and ankylosis detection, respectively. Grad-CAM++ explainability analysis highlighted cortical edges as focus for pipeline decisions.
Conclusions
An optimised deep learning pipeline, including an explainability analysis, detects structural lesions of sacroiliitis on pelvic CT scans with excellent statistical performance on a slice-by-slice and patient level.
Clinical relevance statement
An optimised deep learning pipeline, including a robust explainability analysis, detects structural lesions of sacroiliitis on pelvic CT scans with excellent statistical metrics on a slice-by-slice and patient level.
Key Points
•
Structural lesions of sacroiliitis can be detected automatically in pelvic CT scans.
•
Both automatic segmentation and disease detection yield excellent statistical outcome metrics.
•
The algorithm takes decisions based on cortical edges, rendering an explainable solution.</description><subject>Accuracy</subject><subject>Adolescent</subject><subject>Adult</subject><subject>Aged</subject><subject>Aged, 80 and over</subject><subject>Algorithms</subject><subject>Ankylosis</subject><subject>Ankylosis - diagnostic imaging</subject><subject>Ankylosis - pathology</subject><subject>Annotations</subject><subject>Artificial neural networks</subject><subject>Computed tomography</subject><subject>Datasets</subject><subject>Decision analysis</subject><subject>Deep learning</subject><subject>Diagnostic Radiology</subject><subject>Diagnostic systems</subject><subject>Disease detection</subject><subject>Female</subject><subject>Humans</subject><subject>Image processing</subject><subject>Image segmentation</subject><subject>Imaging</subject><subject>Internal Medicine</subject><subject>Interventional Radiology</subject><subject>Lesions</subject><subject>Machine learning</subject><subject>Medical diagnosis</subject><subject>Medical imaging</subject><subject>Medicine</subject><subject>Medicine & Public Health</subject><subject>Middle Aged</subject><subject>Musculoskeletal</subject><subject>Neural networks</subject><subject>Neural Networks, Computer</subject><subject>Neuroradiology</subject><subject>Optimization</subject><subject>Performance assessment</subject><subject>Radiology</subject><subject>Retrospective Studies</subject><subject>Sacroiliac Joint - diagnostic imaging</subject><subject>Sacroiliac Joint - pathology</subject><subject>Sacroiliitis</subject><subject>Sacroiliitis - pathology</subject><subject>Segmentation</subject><subject>Statistical analysis</subject><subject>Statistics</subject><subject>Tomography, X-Ray Computed - methods</subject><subject>Ultrasound</subject><subject>Young Adult</subject><issn>1432-1084</issn><issn>0938-7994</issn><issn>1432-1084</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kc9u1DAQxi1ERUvhBTggS1y4hI7tJE64oRX_pKpcytlynMnWW8debKcoL8Oz4nZbQD1wsDyj-c03o_kIecXgHQOQZwlACKiAiwp6CXW1PiEnrBa8YtDVT_-Jj8nzlHYA0LNaPiPHQnLWt6w_Ib8ucInaUY_5Z4jXVLttiDZfzXQKkY6Y0WQbPA0TxRhSCRPVfizvenUlT7QUN5e39XyFNGkTg3VWG7oL1uf0ns6Ly9agzxGL3g26sJ9Ldqdyo50d9cOA0eqtD6nQVBtT1jLrC3I0aZfw5f1_Sr5_-ni5-VKdf_v8dfPhvDI163MltcYBeMtFp5upgZqJemoHDhJluZGucRhGbLBHPoyNETDplksww8RaY0YmTsnbg-4-hh8Lpqxmmww6pz2GJSnesQ5aaLu2oG8eobuwRF-2K1THoBGSNYXiB6rcI6WIk9pHO-u4Kgbq1j11cE8V99Sde2otTa_vpZdhxvFPy4NdBRAHIJWS32L8O_s_sr8BLg6pYQ</recordid><startdate>20231101</startdate><enddate>20231101</enddate><creator>Van Den Berghe, Thomas</creator><creator>Babin, Danilo</creator><creator>Chen, Min</creator><creator>Callens, Martijn</creator><creator>Brack, Denim</creator><creator>Maes, Helena</creator><creator>Lievens, Jan</creator><creator>Lammens, Marie</creator><creator>Van Sumere, Maxime</creator><creator>Morbée, Lieve</creator><creator>Hautekeete, Simon</creator><creator>Schatteman, Stijn</creator><creator>Jacobs, Tom</creator><creator>Thooft, Willem-Jan</creator><creator>Herregods, Nele</creator><creator>Huysse, Wouter</creator><creator>Jaremko, Jacob L.</creator><creator>Lambert, Robert</creator><creator>Maksymowych, Walter</creator><creator>Laloo, Frederiek</creator><creator>Baraliakos, Xenofon</creator><creator>De Craemer, Ann-Sophie</creator><creator>Carron, Philippe</creator><creator>Van den Bosch, Filip</creator><creator>Elewaut, Dirk</creator><creator>Jans, Lennart</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QO</scope><scope>7RV</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB0</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7X8</scope></search><sort><creationdate>20231101</creationdate><title>Neural network algorithm for detection of erosions and ankylosis on CT of the sacroiliac joints: multicentre development and validation of diagnostic accuracy</title><author>Van Den Berghe, Thomas ; Babin, Danilo ; Chen, Min ; Callens, Martijn ; Brack, Denim ; Maes, Helena ; Lievens, Jan ; Lammens, Marie ; Van Sumere, Maxime ; Morbée, Lieve ; Hautekeete, Simon ; Schatteman, Stijn ; Jacobs, Tom ; Thooft, Willem-Jan ; Herregods, Nele ; Huysse, Wouter ; Jaremko, Jacob L. ; Lambert, Robert ; Maksymowych, Walter ; Laloo, Frederiek ; Baraliakos, Xenofon ; De Craemer, Ann-Sophie ; Carron, Philippe ; Van den Bosch, Filip ; Elewaut, Dirk ; Jans, Lennart</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c419t-7aaeb026238a5f504134f6b207e7033a4ebbde5e9e2bd5c30fa6270cbf16ccd13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Accuracy</topic><topic>Adolescent</topic><topic>Adult</topic><topic>Aged</topic><topic>Aged, 80 and over</topic><topic>Algorithms</topic><topic>Ankylosis</topic><topic>Ankylosis - diagnostic imaging</topic><topic>Ankylosis - pathology</topic><topic>Annotations</topic><topic>Artificial neural networks</topic><topic>Computed tomography</topic><topic>Datasets</topic><topic>Decision analysis</topic><topic>Deep learning</topic><topic>Diagnostic Radiology</topic><topic>Diagnostic systems</topic><topic>Disease detection</topic><topic>Female</topic><topic>Humans</topic><topic>Image processing</topic><topic>Image segmentation</topic><topic>Imaging</topic><topic>Internal Medicine</topic><topic>Interventional Radiology</topic><topic>Lesions</topic><topic>Machine learning</topic><topic>Medical diagnosis</topic><topic>Medical imaging</topic><topic>Medicine</topic><topic>Medicine & Public Health</topic><topic>Middle Aged</topic><topic>Musculoskeletal</topic><topic>Neural networks</topic><topic>Neural Networks, Computer</topic><topic>Neuroradiology</topic><topic>Optimization</topic><topic>Performance assessment</topic><topic>Radiology</topic><topic>Retrospective Studies</topic><topic>Sacroiliac Joint - diagnostic imaging</topic><topic>Sacroiliac Joint - pathology</topic><topic>Sacroiliitis</topic><topic>Sacroiliitis - pathology</topic><topic>Segmentation</topic><topic>Statistical analysis</topic><topic>Statistics</topic><topic>Tomography, X-Ray Computed - methods</topic><topic>Ultrasound</topic><topic>Young Adult</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Van Den Berghe, Thomas</creatorcontrib><creatorcontrib>Babin, Danilo</creatorcontrib><creatorcontrib>Chen, Min</creatorcontrib><creatorcontrib>Callens, Martijn</creatorcontrib><creatorcontrib>Brack, Denim</creatorcontrib><creatorcontrib>Maes, Helena</creatorcontrib><creatorcontrib>Lievens, Jan</creatorcontrib><creatorcontrib>Lammens, Marie</creatorcontrib><creatorcontrib>Van Sumere, Maxime</creatorcontrib><creatorcontrib>Morbée, Lieve</creatorcontrib><creatorcontrib>Hautekeete, Simon</creatorcontrib><creatorcontrib>Schatteman, Stijn</creatorcontrib><creatorcontrib>Jacobs, Tom</creatorcontrib><creatorcontrib>Thooft, Willem-Jan</creatorcontrib><creatorcontrib>Herregods, Nele</creatorcontrib><creatorcontrib>Huysse, Wouter</creatorcontrib><creatorcontrib>Jaremko, Jacob L.</creatorcontrib><creatorcontrib>Lambert, Robert</creatorcontrib><creatorcontrib>Maksymowych, Walter</creatorcontrib><creatorcontrib>Laloo, Frederiek</creatorcontrib><creatorcontrib>Baraliakos, Xenofon</creatorcontrib><creatorcontrib>De Craemer, Ann-Sophie</creatorcontrib><creatorcontrib>Carron, Philippe</creatorcontrib><creatorcontrib>Van den Bosch, Filip</creatorcontrib><creatorcontrib>Elewaut, Dirk</creatorcontrib><creatorcontrib>Jans, Lennart</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>MEDLINE - Academic</collection><jtitle>European radiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Van Den Berghe, Thomas</au><au>Babin, Danilo</au><au>Chen, Min</au><au>Callens, Martijn</au><au>Brack, Denim</au><au>Maes, Helena</au><au>Lievens, Jan</au><au>Lammens, Marie</au><au>Van Sumere, Maxime</au><au>Morbée, Lieve</au><au>Hautekeete, Simon</au><au>Schatteman, Stijn</au><au>Jacobs, Tom</au><au>Thooft, Willem-Jan</au><au>Herregods, Nele</au><au>Huysse, Wouter</au><au>Jaremko, Jacob L.</au><au>Lambert, Robert</au><au>Maksymowych, Walter</au><au>Laloo, Frederiek</au><au>Baraliakos, Xenofon</au><au>De Craemer, Ann-Sophie</au><au>Carron, Philippe</au><au>Van den Bosch, Filip</au><au>Elewaut, Dirk</au><au>Jans, Lennart</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Neural network algorithm for detection of erosions and ankylosis on CT of the sacroiliac joints: multicentre development and validation of diagnostic accuracy</atitle><jtitle>European radiology</jtitle><stitle>Eur Radiol</stitle><addtitle>Eur Radiol</addtitle><date>2023-11-01</date><risdate>2023</risdate><volume>33</volume><issue>11</issue><spage>8310</spage><epage>8323</epage><pages>8310-8323</pages><issn>1432-1084</issn><issn>0938-7994</issn><eissn>1432-1084</eissn><abstract>Objectives
To evaluate the feasibility and diagnostic accuracy of a deep learning network for detection of structural lesions of sacroiliitis on multicentre pelvic CT scans.
Methods
Pelvic CT scans of 145 patients (81 female, 121 Ghent University/24 Alberta University, 18–87 years old, mean 40 ± 13 years, 2005–2021) with a clinical suspicion of sacroiliitis were retrospectively included. After manual sacroiliac joint (SIJ) segmentation and structural lesion annotation, a U-Net for SIJ segmentation and two separate convolutional neural networks (CNN) for erosion and ankylosis detection were trained. In-training validation and tenfold validation testing (U-Net—
n
= 10 × 58; CNN—
n
= 10 × 29) on a test dataset were performed to assess performance on a slice-by-slice and patient level (dice coefficient/accuracy/sensitivity/specificity/positive and negative predictive value/ROC AUC). Patient-level optimisation was applied to increase the performance regarding predefined statistical metrics. Gradient-weighted class activation mapping (Grad-CAM++) heatmap explainability analysis highlighted image parts with statistically important regions for algorithmic decisions.
Results
Regarding SIJ segmentation, a dice coefficient of 0.75 was obtained in the test dataset. For slice-by-slice structural lesion detection, a sensitivity/specificity/ROC AUC of 95%/89%/0.92 and 93%/91%/0.91 were obtained in the test dataset for erosion and ankylosis detection, respectively. For patient-level lesion detection after pipeline optimisation for predefined statistical metrics, a sensitivity/specificity of 95%/85% and 82%/97% were obtained for erosion and ankylosis detection, respectively. Grad-CAM++ explainability analysis highlighted cortical edges as focus for pipeline decisions.
Conclusions
An optimised deep learning pipeline, including an explainability analysis, detects structural lesions of sacroiliitis on pelvic CT scans with excellent statistical performance on a slice-by-slice and patient level.
Clinical relevance statement
An optimised deep learning pipeline, including a robust explainability analysis, detects structural lesions of sacroiliitis on pelvic CT scans with excellent statistical metrics on a slice-by-slice and patient level.
Key Points
•
Structural lesions of sacroiliitis can be detected automatically in pelvic CT scans.
•
Both automatic segmentation and disease detection yield excellent statistical outcome metrics.
•
The algorithm takes decisions based on cortical edges, rendering an explainable solution.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>37219619</pmid><doi>10.1007/s00330-023-09704-y</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1432-1084 |
ispartof | European radiology, 2023-11, Vol.33 (11), p.8310-8323 |
issn | 1432-1084 0938-7994 1432-1084 |
language | eng |
recordid | cdi_proquest_miscellaneous_2818060686 |
source | MEDLINE; SpringerNature Journals |
subjects | Accuracy Adolescent Adult Aged Aged, 80 and over Algorithms Ankylosis Ankylosis - diagnostic imaging Ankylosis - pathology Annotations Artificial neural networks Computed tomography Datasets Decision analysis Deep learning Diagnostic Radiology Diagnostic systems Disease detection Female Humans Image processing Image segmentation Imaging Internal Medicine Interventional Radiology Lesions Machine learning Medical diagnosis Medical imaging Medicine Medicine & Public Health Middle Aged Musculoskeletal Neural networks Neural Networks, Computer Neuroradiology Optimization Performance assessment Radiology Retrospective Studies Sacroiliac Joint - diagnostic imaging Sacroiliac Joint - pathology Sacroiliitis Sacroiliitis - pathology Segmentation Statistical analysis Statistics Tomography, X-Ray Computed - methods Ultrasound Young Adult |
title | Neural network algorithm for detection of erosions and ankylosis on CT of the sacroiliac joints: multicentre development and validation of diagnostic accuracy |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-03T03%3A09%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Neural%20network%20algorithm%20for%20detection%20of%20erosions%20and%20ankylosis%20on%20CT%20of%20the%20sacroiliac%20joints:%20multicentre%20development%20and%20validation%20of%20diagnostic%20accuracy&rft.jtitle=European%20radiology&rft.au=Van%20Den%20Berghe,%20Thomas&rft.date=2023-11-01&rft.volume=33&rft.issue=11&rft.spage=8310&rft.epage=8323&rft.pages=8310-8323&rft.issn=1432-1084&rft.eissn=1432-1084&rft_id=info:doi/10.1007/s00330-023-09704-y&rft_dat=%3Cproquest_cross%3E2881053715%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2881053715&rft_id=info:pmid/37219619&rfr_iscdi=true |