Neural network algorithm for detection of erosions and ankylosis on CT of the sacroiliac joints: multicentre development and validation of diagnostic accuracy

Objectives To evaluate the feasibility and diagnostic accuracy of a deep learning network for detection of structural lesions of sacroiliitis on multicentre pelvic CT scans. Methods Pelvic CT scans of 145 patients (81 female, 121 Ghent University/24 Alberta University, 18–87 years old, mean 40 ± 13 ...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:European radiology 2023-11, Vol.33 (11), p.8310-8323
Hauptverfasser: Van Den Berghe, Thomas, Babin, Danilo, Chen, Min, Callens, Martijn, Brack, Denim, Maes, Helena, Lievens, Jan, Lammens, Marie, Van Sumere, Maxime, Morbée, Lieve, Hautekeete, Simon, Schatteman, Stijn, Jacobs, Tom, Thooft, Willem-Jan, Herregods, Nele, Huysse, Wouter, Jaremko, Jacob L., Lambert, Robert, Maksymowych, Walter, Laloo, Frederiek, Baraliakos, Xenofon, De Craemer, Ann-Sophie, Carron, Philippe, Van den Bosch, Filip, Elewaut, Dirk, Jans, Lennart
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Objectives To evaluate the feasibility and diagnostic accuracy of a deep learning network for detection of structural lesions of sacroiliitis on multicentre pelvic CT scans. Methods Pelvic CT scans of 145 patients (81 female, 121 Ghent University/24 Alberta University, 18–87 years old, mean 40 ± 13 years, 2005–2021) with a clinical suspicion of sacroiliitis were retrospectively included. After manual sacroiliac joint (SIJ) segmentation and structural lesion annotation, a U-Net for SIJ segmentation and two separate convolutional neural networks (CNN) for erosion and ankylosis detection were trained. In-training validation and tenfold validation testing (U-Net— n  = 10 × 58; CNN— n  = 10 × 29) on a test dataset were performed to assess performance on a slice-by-slice and patient level (dice coefficient/accuracy/sensitivity/specificity/positive and negative predictive value/ROC AUC). Patient-level optimisation was applied to increase the performance regarding predefined statistical metrics. Gradient-weighted class activation mapping (Grad-CAM++) heatmap explainability analysis highlighted image parts with statistically important regions for algorithmic decisions. Results Regarding SIJ segmentation, a dice coefficient of 0.75 was obtained in the test dataset. For slice-by-slice structural lesion detection, a sensitivity/specificity/ROC AUC of 95%/89%/0.92 and 93%/91%/0.91 were obtained in the test dataset for erosion and ankylosis detection, respectively. For patient-level lesion detection after pipeline optimisation for predefined statistical metrics, a sensitivity/specificity of 95%/85% and 82%/97% were obtained for erosion and ankylosis detection, respectively. Grad-CAM++  explainability analysis highlighted cortical edges as focus for pipeline decisions. Conclusions An optimised deep learning pipeline, including an explainability analysis, detects structural lesions of sacroiliitis on pelvic CT scans with excellent statistical performance on a slice-by-slice and patient level. Clinical relevance statement An optimised deep learning pipeline, including a robust explainability analysis, detects structural lesions of sacroiliitis on pelvic CT scans with excellent statistical metrics on a slice-by-slice and patient level. Key Points • Structural lesions of sacroiliitis can be detected automatically in pelvic CT scans. • Both automatic segmentation and disease detection yield excellent statistical outcome metrics. • The algorithm takes decisions based on cortic
ISSN:1432-1084
0938-7994
1432-1084
DOI:10.1007/s00330-023-09704-y