KLF10 knockdown negatively regulates CTRP3 to improve OGD/R-induced brain microvascular endothelial cell injury and barrier dysfunction through Nrf2/HO-1 signaling pathway

Ischemic stroke seriously endangers human health and even death. This study aimed to investigate the role of KLF10/CTRP3 in oxygen-glucose deprivation/reperfusion (OGD/R)-induced brain microvascular endothelial cells injury, as well as the regulatory effects of the Nrf2/HO-1 signaling pathway. OGD/R...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Tissue & cell 2023-06, Vol.82, p.102106-102106, Article 102106
Hauptverfasser: Zeng, Youchao, Xu, Yongsu, Pan, Yongjie, Guo, Hong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Ischemic stroke seriously endangers human health and even death. This study aimed to investigate the role of KLF10/CTRP3 in oxygen-glucose deprivation/reperfusion (OGD/R)-induced brain microvascular endothelial cells injury, as well as the regulatory effects of the Nrf2/HO-1 signaling pathway. OGD/R-induced human microvascular endothelial cells (hBMECs) were used to simulate the model of cerebral ischemia-reperfusion (I/R) injury. The expression of KLF10/CTRP3 in OGD/R-induced hBMECs as well as the transfection efficiency were all detected by RT-qPCR and western blot. The interaction of KLF10 and CTRP3 was confirmed by dual-luciferase reporter assay and chromatin immunoprecipitation (ChIP). The viability, apoptosis and endothelial permeability of OGD/R-induced hBMECs was detected by CCK-8, TUNEL and FITC-Dextran assay kit. The capacity of cell migration was assessed by wound healing assay. The expression of apoptosis related proteins, oxidative stress levels and tight junction proteins was also detected. As a result, the expression of KLF10 was increased in OGD/R-induced hBMECs and downregulation of KLF10 could promote the viability, migration and suppress the apoptosis, oxidative stress and endothelial permeability by downregulating the expression of caspase 3, Bax, cleaved PARP, ROS, MDA, and upregulating the expression of Bcl-2, SOD, GSH-Px, ZO-1, occludin, claudin-5. Nrf2/HO-1 signaling pathway was inhibited in OGD/R-induced hBMECs, which was activated by downregulation of KLF10. KLF10 was demonstrated to be combined with CTRP3 and KLF10 inhibited transcription of CTRP3 in hBMECs. The above changes affected by downregulation of KLF10 could be reversed by the interference with CTRP3. In conclusion, KLF10 knockdown improved OGD/R-induced brain microvascular endothelial cell injury and barrier dysfunction through the activation of Nrf2/HO-1 signaling pathway, which was weakened by the downregulation of CTRP3. •Interference with KLF10 enhanced the viability of OGD/R-induced hBMECs.•Interference with KLF10 inhibited the apoptosis of OGD/R-induced hBMECs.•Interference with KLF10 alleviated the oxidative stress of OGD/R-induced hBMECs.•Interference with KLF10 improved the barrier dysfunction of OGD/R-induced hBMECs.•CTRP3 silencing reversed the impacts of KLF10 downregulation on OGD/R-induced damage of hBMECs.
ISSN:0040-8166
1532-3072
DOI:10.1016/j.tice.2023.102106