Fracture behaviors of piezoelectric materials
Theoretical analyses and experimental observations of the failure and fracture behaviors of piezoelectric materials are presented. The theoretical analyses are based on the Stroh formalism. A strip dielectric breakdown model is proposed to estimate the effect of electrical non-linearity on the piezo...
Gespeichert in:
Veröffentlicht in: | Theoretical and applied fracture mechanics 2004-04, Vol.41 (1), p.339-379 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Theoretical analyses and experimental observations of the failure and fracture behaviors of piezoelectric materials are presented. The theoretical analyses are based on the Stroh formalism. A strip dielectric breakdown model is proposed to estimate the effect of electrical non-linearity on the piezoelectric fracture of electrically insulated cracks. The reviewed experiments include the indentation fracture test, the bending test on smooth samples, the fracture test on pre-notched or pre-cracked samples, the environment-assisted fracture test, etc. For electrically insulated cracks, the experimental results show a complicated fracture behavior under combined electrical and mechanical loading. Fracture data are greatly scattered when a static electric field is applied. For electrically conducting cracks, the experimental results demonstrate that static electric fields can fracture poled and depoled lead zirconate titanate (PZT) ceramics. A charge-free zone model is introduced to understand the failure behavior of conducting cracks in the depoled lead zirconate titanate ceramics under electrical and/or mechanical loading. These theoretical and experimental results indicate that fracture mechanics concepts are useful in the study of the failure behaviors of piezoelectric materials. |
---|---|
ISSN: | 0167-8442 1872-7638 |
DOI: | 10.1016/j.tafmec.2003.11.019 |