A dynamical system which must be stable whose stability cannot be proved

Building on a result of Blondel, we show that there exists a piecewise affine dynamical system whose stability (local asymptotic stability, global asymptotic stability and global convergence) is equivalent to the correctness of ZF set theory—a property which must be assumed to hold but which cannot...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Theoretical computer science 2004-12, Vol.328 (3), p.355-361
1. Verfasser: Foy, John
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 361
container_issue 3
container_start_page 355
container_title Theoretical computer science
container_volume 328
creator Foy, John
description Building on a result of Blondel, we show that there exists a piecewise affine dynamical system whose stability (local asymptotic stability, global asymptotic stability and global convergence) is equivalent to the correctness of ZF set theory—a property which must be assumed to hold but which cannot be proved within ZF.
doi_str_mv 10.1016/j.tcs.2004.05.001
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_28170146</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0304397504003639</els_id><sourcerecordid>28170146</sourcerecordid><originalsourceid>FETCH-LOGICAL-c399t-43b2e037b3d259b775c42119b25c899570088bf47a61fa2fb70ee9f4820500153</originalsourceid><addsrcrecordid>eNp9kE1PwzAMhiMEEuPjB3DrBW4tTpo0jThNCBjSJC5wjtLU1TL1Y9Td0P49GUPihi-WrcfvK7-M3XDIOPDifp1NnjIBIDNQGQA_YTNeapMKYeQpm0EOMs2NVufsgmgNsZQuZmwxT-p977rgXZvQnibskq9V8Kuk29KUVJjQ5KoW43Kg4xDaMO0T7_p--AE247DD-oqdNa4lvP7tl-zj-en9cZEu315eH-fL1OfGTKnMK4GQ6yqvhTKV1spLwbmphPKlMUoDlGXVSO0K3jjRVBoQTSNLASp-pfJLdnfUjbafW6TJdoE8tq3rcdiSFSXXwGURQX4E_TgQjdjYzRg6N-4tB3vIzK5tzMweMrOgbFSPN7e_4o5iIM3oeh_o77AQxggtI_dw5DB-ugs4WvIBe491GNFPth7CPy7ftTqAFw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>28170146</pqid></control><display><type>article</type><title>A dynamical system which must be stable whose stability cannot be proved</title><source>Elsevier ScienceDirect Journals Complete</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Foy, John</creator><creatorcontrib>Foy, John</creatorcontrib><description>Building on a result of Blondel, we show that there exists a piecewise affine dynamical system whose stability (local asymptotic stability, global asymptotic stability and global convergence) is equivalent to the correctness of ZF set theory—a property which must be assumed to hold but which cannot be proved within ZF.</description><identifier>ISSN: 0304-3975</identifier><identifier>EISSN: 1879-2294</identifier><identifier>DOI: 10.1016/j.tcs.2004.05.001</identifier><identifier>CODEN: TCSCDI</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Correctness ; Dynamical systems ; Exact sciences and technology ; Global analysis, analysis on manifolds ; Hybrid systems ; Logic and foundations ; Mathematical logic, foundations, set theory ; Mathematics ; Piecewise affine systems ; Sciences and techniques of general use ; Set theory ; Stability ; Topology. Manifolds and cell complexes. Global analysis and analysis on manifolds</subject><ispartof>Theoretical computer science, 2004-12, Vol.328 (3), p.355-361</ispartof><rights>2004 Elsevier B.V.</rights><rights>2005 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c399t-43b2e037b3d259b775c42119b25c899570088bf47a61fa2fb70ee9f4820500153</citedby><cites>FETCH-LOGICAL-c399t-43b2e037b3d259b775c42119b25c899570088bf47a61fa2fb70ee9f4820500153</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.tcs.2004.05.001$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=16299274$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Foy, John</creatorcontrib><title>A dynamical system which must be stable whose stability cannot be proved</title><title>Theoretical computer science</title><description>Building on a result of Blondel, we show that there exists a piecewise affine dynamical system whose stability (local asymptotic stability, global asymptotic stability and global convergence) is equivalent to the correctness of ZF set theory—a property which must be assumed to hold but which cannot be proved within ZF.</description><subject>Correctness</subject><subject>Dynamical systems</subject><subject>Exact sciences and technology</subject><subject>Global analysis, analysis on manifolds</subject><subject>Hybrid systems</subject><subject>Logic and foundations</subject><subject>Mathematical logic, foundations, set theory</subject><subject>Mathematics</subject><subject>Piecewise affine systems</subject><subject>Sciences and techniques of general use</subject><subject>Set theory</subject><subject>Stability</subject><subject>Topology. Manifolds and cell complexes. Global analysis and analysis on manifolds</subject><issn>0304-3975</issn><issn>1879-2294</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><recordid>eNp9kE1PwzAMhiMEEuPjB3DrBW4tTpo0jThNCBjSJC5wjtLU1TL1Y9Td0P49GUPihi-WrcfvK7-M3XDIOPDifp1NnjIBIDNQGQA_YTNeapMKYeQpm0EOMs2NVufsgmgNsZQuZmwxT-p977rgXZvQnibskq9V8Kuk29KUVJjQ5KoW43Kg4xDaMO0T7_p--AE247DD-oqdNa4lvP7tl-zj-en9cZEu315eH-fL1OfGTKnMK4GQ6yqvhTKV1spLwbmphPKlMUoDlGXVSO0K3jjRVBoQTSNLASp-pfJLdnfUjbafW6TJdoE8tq3rcdiSFSXXwGURQX4E_TgQjdjYzRg6N-4tB3vIzK5tzMweMrOgbFSPN7e_4o5iIM3oeh_o77AQxggtI_dw5DB-ugs4WvIBe491GNFPth7CPy7ftTqAFw</recordid><startdate>20041203</startdate><enddate>20041203</enddate><creator>Foy, John</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>H8D</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20041203</creationdate><title>A dynamical system which must be stable whose stability cannot be proved</title><author>Foy, John</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c399t-43b2e037b3d259b775c42119b25c899570088bf47a61fa2fb70ee9f4820500153</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Correctness</topic><topic>Dynamical systems</topic><topic>Exact sciences and technology</topic><topic>Global analysis, analysis on manifolds</topic><topic>Hybrid systems</topic><topic>Logic and foundations</topic><topic>Mathematical logic, foundations, set theory</topic><topic>Mathematics</topic><topic>Piecewise affine systems</topic><topic>Sciences and techniques of general use</topic><topic>Set theory</topic><topic>Stability</topic><topic>Topology. Manifolds and cell complexes. Global analysis and analysis on manifolds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Foy, John</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Theoretical computer science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Foy, John</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A dynamical system which must be stable whose stability cannot be proved</atitle><jtitle>Theoretical computer science</jtitle><date>2004-12-03</date><risdate>2004</risdate><volume>328</volume><issue>3</issue><spage>355</spage><epage>361</epage><pages>355-361</pages><issn>0304-3975</issn><eissn>1879-2294</eissn><coden>TCSCDI</coden><abstract>Building on a result of Blondel, we show that there exists a piecewise affine dynamical system whose stability (local asymptotic stability, global asymptotic stability and global convergence) is equivalent to the correctness of ZF set theory—a property which must be assumed to hold but which cannot be proved within ZF.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.tcs.2004.05.001</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0304-3975
ispartof Theoretical computer science, 2004-12, Vol.328 (3), p.355-361
issn 0304-3975
1879-2294
language eng
recordid cdi_proquest_miscellaneous_28170146
source Elsevier ScienceDirect Journals Complete; EZB-FREE-00999 freely available EZB journals
subjects Correctness
Dynamical systems
Exact sciences and technology
Global analysis, analysis on manifolds
Hybrid systems
Logic and foundations
Mathematical logic, foundations, set theory
Mathematics
Piecewise affine systems
Sciences and techniques of general use
Set theory
Stability
Topology. Manifolds and cell complexes. Global analysis and analysis on manifolds
title A dynamical system which must be stable whose stability cannot be proved
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T09%3A00%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20dynamical%20system%20which%20must%20be%20stable%20whose%20stability%20cannot%20be%20proved&rft.jtitle=Theoretical%20computer%20science&rft.au=Foy,%20John&rft.date=2004-12-03&rft.volume=328&rft.issue=3&rft.spage=355&rft.epage=361&rft.pages=355-361&rft.issn=0304-3975&rft.eissn=1879-2294&rft.coden=TCSCDI&rft_id=info:doi/10.1016/j.tcs.2004.05.001&rft_dat=%3Cproquest_cross%3E28170146%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=28170146&rft_id=info:pmid/&rft_els_id=S0304397504003639&rfr_iscdi=true