A dynamical system which must be stable whose stability cannot be proved
Building on a result of Blondel, we show that there exists a piecewise affine dynamical system whose stability (local asymptotic stability, global asymptotic stability and global convergence) is equivalent to the correctness of ZF set theory—a property which must be assumed to hold but which cannot...
Gespeichert in:
Veröffentlicht in: | Theoretical computer science 2004-12, Vol.328 (3), p.355-361 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Building on a result of Blondel, we show that there exists a piecewise affine dynamical system whose stability (local asymptotic stability, global asymptotic stability and global convergence) is equivalent to the correctness of ZF set theory—a property which must be assumed to hold but which cannot be proved within ZF. |
---|---|
ISSN: | 0304-3975 1879-2294 |
DOI: | 10.1016/j.tcs.2004.05.001 |