A dynamical system which must be stable whose stability cannot be proved

Building on a result of Blondel, we show that there exists a piecewise affine dynamical system whose stability (local asymptotic stability, global asymptotic stability and global convergence) is equivalent to the correctness of ZF set theory—a property which must be assumed to hold but which cannot...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Theoretical computer science 2004-12, Vol.328 (3), p.355-361
1. Verfasser: Foy, John
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Building on a result of Blondel, we show that there exists a piecewise affine dynamical system whose stability (local asymptotic stability, global asymptotic stability and global convergence) is equivalent to the correctness of ZF set theory—a property which must be assumed to hold but which cannot be proved within ZF.
ISSN:0304-3975
1879-2294
DOI:10.1016/j.tcs.2004.05.001