Danhong injection improves neurological function in rats with ischemic stroke by enhancing neurogenesis and activating BDNF/AKT/CREB signaling pathway

Danhong injection (DHI) is a traditional Chinese medicine injection that promotes blood circulation and removes blood stasis and has been widely used in the treatment of stroke. Many studies have focused on the mechanism of DHI in acute ischemic stroke (IS); however, few studies have thoroughly expl...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biomedicine & pharmacotherapy 2023-07, Vol.163, p.114887-114887, Article 114887
Hauptverfasser: Li, Lan, Yang, Jie-hong, Li, Chang, Zhou, Hui-fen, Yu, Li, Wu, Xiao-long, Lu, Yi-hang, He, Yu, Wan, Hai-tong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Danhong injection (DHI) is a traditional Chinese medicine injection that promotes blood circulation and removes blood stasis and has been widely used in the treatment of stroke. Many studies have focused on the mechanism of DHI in acute ischemic stroke (IS); however, few studies have thoroughly explored its role during recovery. In this study, we aimed to determine the effect of DHI on long-term neurological function recovery after cerebral ischemia and explored the related mechanisms. Middle cerebral artery occlusion (MCAO) was used to establish an IS model in rats. The efficacy of DHI was assessed using neurological severity scores, behaviors, cerebral infarction volume and histopathology. Immunofluorescence staining was performed to assess hippocampal neurogenesis. An in vitro oxygen-glucose deprivation/reoxygenation (OGD/R) cell model was constructed and western-blot analyses were performed to verify the underlying mechanisms. Our results showed that DHI treatment greatly reduced the infarct volume, promoted neurological recovery and reversed brain pathological changes. Furthermore, DHI promoted neurogenesis by increasing the migration and proliferation of neural stem cells, and enhancing synaptic plasticity. Moreover, we found that the pro-neurogenic effects of DHI were related to an increase in brain-derived neurotrophic factor (BDNF) expression and the activation of AKT/CREB, which were attenuated by ANA-12 and LY294002, the inhibitors of the BDNF receptor and PI3K. These results suggest that DHI improves neurological function by enhancing neurogenesis and activating the BDNF/AKT/CREB signaling pathways. [Display omitted] •We focus on the effects of DHI on long-term neurological function after stroke.•DHI improves neurological functional rehabilitation by enhancing neurogenesis.•DHI promotes neurogenesis by activating BDNF/AKT/CREB signaling pathway.
ISSN:0753-3322
1950-6007
DOI:10.1016/j.biopha.2023.114887