Scalable Multilayer Architecture of Assembled Single-Atom Qubit Arrays in a Three-Dimensional Talbot Tweezer Lattice

We report on the realization of a novel platform for the creation of large-scale 3D multilayer configurations of planar arrays of individual neutral-atom qubits: a microlens-generated Talbot tweezer lattice that extends 2D tweezer arrays to the third dimension at no additional costs. We demonstrate...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review letters 2023-05, Vol.130 (18), p.180601-180601, Article 180601
Hauptverfasser: Schlosser, Malte, Tichelmann, Sascha, Schäffner, Dominik, de Mello, Daniel Ohl, Hambach, Moritz, Schütz, Jan, Birkl, Gerhard
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We report on the realization of a novel platform for the creation of large-scale 3D multilayer configurations of planar arrays of individual neutral-atom qubits: a microlens-generated Talbot tweezer lattice that extends 2D tweezer arrays to the third dimension at no additional costs. We demonstrate the trapping and imaging of rubidium atoms in integer and fractional Talbot planes and the assembly of defect-free atom arrays in different layers. The Talbot self-imaging effect for microlens arrays constitutes a structurally robust and wavelength-universal method for the realization of 3D atom arrays with beneficial scaling properties. With more than 750 qubit sites per 2D layer, these scaling properties imply that 10 000 qubit sites are already accessible in 3D in our current implementation. The trap topology and functionality are configurable in the micrometer regime. We use this to generate interleaved lattices with dynamic position control and parallelized sublattice addressing of spin states for immediate application in quantum science and technology.
ISSN:0031-9007
1079-7114
DOI:10.1103/PhysRevLett.130.180601