Inhibition of Staphylococcus aureus biofilms by poly-L-aspartic acid nanoparticles loaded with Litsea cubeba essential oil

Staphylococcus aureus (S. aureus) biofilms contamination on various food-contacting surfaces is considered a significant threat in the field of food. Poly-L-aspartic acid (PASP) was proven to damage biofilm by affecting bacterial adhesion, metabolic activity, and extracellular polymeric substances i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of biological macromolecules 2023-07, Vol.242 (Pt 2), p.124904-124904, Article 124904
Hauptverfasser: Lin, Lin, Zhang, Pin, Chen, Xiaochen, Hu, Wei, Abdel-Samie, Mohamed A., Li, Changzhu, Cui, Haiying
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Staphylococcus aureus (S. aureus) biofilms contamination on various food-contacting surfaces is considered a significant threat in the field of food. Poly-L-aspartic acid (PASP) was proven to damage biofilm by affecting bacterial adhesion, metabolic activity, and extracellular polymeric substances in this study. Especially for eDNA, its generation was reduced by 49.4 %. After treatment with 5 mg/mL of PASP, the number of S. aureus in the biofilm at different growth stages decreased by 1.20–1.68 log CFU/mL. The nanoparticles prepared by PASP and hydroxypropyl trimethyl ammonium chloride chitosan were used to embed LC-EO (EO@PASP/HACCNPs). The results indicated that the particle size of the optimized nanoparticles was 209.84 nm with an encapsulation rate of 70.28 %. Compared to LC-EO alone, EO@PASP/HACCNPs had more significant permeation and dispersion effects on biofilms and possessed long-lasting anti-biofilm activity. For the biofilm grown for 72 h, the population of S. aureus in the EO@PASP/HACCNPs-treated biofilm was additionally reduced by 0.63 log CFU/mL compared with the LC-EO-treated group. EO@PASP/HACCNPs were also applied to different food-contacting materials. The lowest inhibition rate of EO@PASP/HACCNPs on S. aureus biofilm still reached 97.35 %. The sensory properties of the chicken breast were not affected by EO@PASP/HACCNPs.
ISSN:0141-8130
1879-0003
DOI:10.1016/j.ijbiomac.2023.124904