Synthesis of Pt/ZrO(2) catalyst on Fecralloy substrates using composite plasma-polymerized films

In a hydrogen-based energy system, fuel cells will utilize hydrogen to produce electricity while reformers produce hydrogen from infrastructure fuels, such as gasoline, diesel and natural gas. Reformers based on microchannel technology require a catalyst dispersed throughout a porous support, and th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on plasma science 2005-12, Vol.33 (6), p.2035-2045
Hauptverfasser: Dhar, R, Pedrow, P D, Liddell, K C, Ming, Quentin, Moeller, T M, Osman, M A
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In a hydrogen-based energy system, fuel cells will utilize hydrogen to produce electricity while reformers produce hydrogen from infrastructure fuels, such as gasoline, diesel and natural gas. Reformers based on microchannel technology require a catalyst dispersed throughout a porous support, and the support must adhere firmly to the substrate. In this work, catalyst and support precursors were deposited via plasma enhanced chemical vapor deposition onto Fecralloy substrates, in alternate layers of plasma-polymerized platinum acetylacetonate and zirconium acetylacetonate. Non-equilibrium, inductively-coupled plasma was generated by applying radio frequency fields to a precursor vapor plume emanating from a heated sublimator crucible. After calcining the composite organic film to volatilize organic constituents, catalytically active platinum agglomerates remained supported by a matrix of zirconia. Plasma-processing took place directly in precursor vapor without added carrier gas. The intermediate organic composite film and the final synthesized platinum-loaded support adhering to the Fecralloy have been evaluated with profilometry, scanning electron microscopy, energy dispersive spectroscopy, X-ray diffraction, and inductively coupled plasma-mass spectrometry. Cubic phase platinum and cubic phase zirconia have been detected on the Fecralloy. This material catalyzes conversion of carbon monoxide to carbon dioxide in a water gas shift (WGS) reactor in the temperature range 400 deg C-500 deg C.
ISSN:0093-3813
DOI:10.1109/TPS.2005.860124