Integrated membrane-free thermal flow sensor for silicon-on-glass microfluidics

Lab-on-a-chip (LOC) forms the basis of new-generation portable analytical systems. LOC allows the manipulation of ultralow flows of liquid reagents and multistep reactions on a microfluidic chip, which requires a robust and precise instrument to control the flow of liquids on a chip. However, commer...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Lab on a chip 2023-06, Vol.23 (12), p.2789-2797
Hauptverfasser: Ryzhkov, Vitaly V, Echeistov, Vladimir V, Zverev, Aleksandr V, Baklykov, Dmitry A, Konstantinova, Tatyana, Lotkov, Evgeny S, Ryazantcev, Pavel G, Sh. Alibekov, Ruslan, Kuguk, Aleksey K, Aleksandrov, Andrey R, Krasko, Elisey S, Barbasheva, Anastasiya A, Ryzhikov, Ilya A, Rodionov, Ilya A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2797
container_issue 12
container_start_page 2789
container_title Lab on a chip
container_volume 23
creator Ryzhkov, Vitaly V
Echeistov, Vladimir V
Zverev, Aleksandr V
Baklykov, Dmitry A
Konstantinova, Tatyana
Lotkov, Evgeny S
Ryazantcev, Pavel G
Sh. Alibekov, Ruslan
Kuguk, Aleksey K
Aleksandrov, Andrey R
Krasko, Elisey S
Barbasheva, Anastasiya A
Ryzhikov, Ilya A
Rodionov, Ilya A
description Lab-on-a-chip (LOC) forms the basis of new-generation portable analytical systems. LOC allows the manipulation of ultralow flows of liquid reagents and multistep reactions on a microfluidic chip, which requires a robust and precise instrument to control the flow of liquids on a chip. However, commercially available flow meters appear to be a standalone option adding a significant dead volume of tubes for connection to the chip. Furthermore, most of them cannot be fabricated within the same technological cycle as microfluidic channels. Here, we report on a membrane-free microfluidic thermal flow sensor (MTFS) that can be integrated into a silicon-glass microfluidic chip with a microchannel topology. We propose a membrane-free design with thin-film thermo-resistive sensitive elements isolated from microfluidic channels and a 4′′ wafer silicon-glass fabrication route. It ensures MTFS compatibility with corrosive liquids, which is critically important for biological applications. MTFS design rules for the best sensitivity and measurement range are proposed. A method for automated thermo-resistive sensitive element calibration is described. The device parameters are experimentally tested for hundreds of hours with a reference Coriolis flow sensor demonstrating a relative flow error of less than 5% within the range of 2-30 μL min −1 along with a sub-second time response. Design, electronics, fabrication technology, and characterization method of an on-chip corrosion-resistant microfluidic thermal flow sensor for silicon lab-on-a-chip and POC devices.
doi_str_mv 10.1039/d3lc00061c
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_2815249337</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2815249337</sourcerecordid><originalsourceid>FETCH-LOGICAL-c337t-34f278acadec5a122c3016daa5bb4957a37cde9dd1d174b49258b4bb687ccca33</originalsourceid><addsrcrecordid>eNpdkU1LxDAQhoMorq5evCsFLyJUk6ZtmqPUr4WFvei5pJPpmiVt16RF_PdGd11BmCFh8vDO5B1Czhi9YZTLW80tUEpzBnvkiKWCx5QVcn93l2JCjr1fUcqyNC8OyYQLJgspxRFZzLoBl04NqKMW29qpDuPGIUbDG7pW2aix_UfksfO9i5qQ3lgDfReHWFrlfdQacH1jR6MN-BNy0Cjr8XR7Tsnr48NL-RzPF0-z8m4eA-diiHnaJKJQoDRCpliSAKcs10pldZ3KTCguQKPUmmkm0lBKsqJO6zovBAAozqfkaqO7dv37iH6oWuMBrQ3z96OvkoJlSSpDs4Be_kNX_ei6MF2gkozRIE4Ddb2hwme8d9hUa2da5T4rRqtvm6t7Pi9_bC4DfLGVHOsW9Q799TUA5xvAedi9_u2JfwFxtYIV</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2825109250</pqid></control><display><type>article</type><title>Integrated membrane-free thermal flow sensor for silicon-on-glass microfluidics</title><source>Royal Society Of Chemistry Journals 2008-</source><source>Alma/SFX Local Collection</source><creator>Ryzhkov, Vitaly V ; Echeistov, Vladimir V ; Zverev, Aleksandr V ; Baklykov, Dmitry A ; Konstantinova, Tatyana ; Lotkov, Evgeny S ; Ryazantcev, Pavel G ; Sh. Alibekov, Ruslan ; Kuguk, Aleksey K ; Aleksandrov, Andrey R ; Krasko, Elisey S ; Barbasheva, Anastasiya A ; Ryzhikov, Ilya A ; Rodionov, Ilya A</creator><creatorcontrib>Ryzhkov, Vitaly V ; Echeistov, Vladimir V ; Zverev, Aleksandr V ; Baklykov, Dmitry A ; Konstantinova, Tatyana ; Lotkov, Evgeny S ; Ryazantcev, Pavel G ; Sh. Alibekov, Ruslan ; Kuguk, Aleksey K ; Aleksandrov, Andrey R ; Krasko, Elisey S ; Barbasheva, Anastasiya A ; Ryzhikov, Ilya A ; Rodionov, Ilya A</creatorcontrib><description>Lab-on-a-chip (LOC) forms the basis of new-generation portable analytical systems. LOC allows the manipulation of ultralow flows of liquid reagents and multistep reactions on a microfluidic chip, which requires a robust and precise instrument to control the flow of liquids on a chip. However, commercially available flow meters appear to be a standalone option adding a significant dead volume of tubes for connection to the chip. Furthermore, most of them cannot be fabricated within the same technological cycle as microfluidic channels. Here, we report on a membrane-free microfluidic thermal flow sensor (MTFS) that can be integrated into a silicon-glass microfluidic chip with a microchannel topology. We propose a membrane-free design with thin-film thermo-resistive sensitive elements isolated from microfluidic channels and a 4′′ wafer silicon-glass fabrication route. It ensures MTFS compatibility with corrosive liquids, which is critically important for biological applications. MTFS design rules for the best sensitivity and measurement range are proposed. A method for automated thermo-resistive sensitive element calibration is described. The device parameters are experimentally tested for hundreds of hours with a reference Coriolis flow sensor demonstrating a relative flow error of less than 5% within the range of 2-30 μL min −1 along with a sub-second time response. Design, electronics, fabrication technology, and characterization method of an on-chip corrosion-resistant microfluidic thermal flow sensor for silicon lab-on-a-chip and POC devices.</description><identifier>ISSN: 1473-0197</identifier><identifier>EISSN: 1473-0189</identifier><identifier>DOI: 10.1039/d3lc00061c</identifier><identifier>PMID: 37198997</identifier><language>eng</language><publisher>England: Royal Society of Chemistry</publisher><subject>Control equipment ; Flowmeters ; Liquids ; Membranes ; Microchannels ; Microfluidics ; Parameter sensitivity ; Reagents ; Sensors ; Silicon ; Thin films ; Time response ; Topology ; Tubes</subject><ispartof>Lab on a chip, 2023-06, Vol.23 (12), p.2789-2797</ispartof><rights>Copyright Royal Society of Chemistry 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c337t-34f278acadec5a122c3016daa5bb4957a37cde9dd1d174b49258b4bb687ccca33</citedby><cites>FETCH-LOGICAL-c337t-34f278acadec5a122c3016daa5bb4957a37cde9dd1d174b49258b4bb687ccca33</cites><orcidid>0000-0003-1180-9887 ; 0000-0002-2697-8803 ; 0000-0002-8931-5142 ; 0000-0001-7844-0039</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37198997$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ryzhkov, Vitaly V</creatorcontrib><creatorcontrib>Echeistov, Vladimir V</creatorcontrib><creatorcontrib>Zverev, Aleksandr V</creatorcontrib><creatorcontrib>Baklykov, Dmitry A</creatorcontrib><creatorcontrib>Konstantinova, Tatyana</creatorcontrib><creatorcontrib>Lotkov, Evgeny S</creatorcontrib><creatorcontrib>Ryazantcev, Pavel G</creatorcontrib><creatorcontrib>Sh. Alibekov, Ruslan</creatorcontrib><creatorcontrib>Kuguk, Aleksey K</creatorcontrib><creatorcontrib>Aleksandrov, Andrey R</creatorcontrib><creatorcontrib>Krasko, Elisey S</creatorcontrib><creatorcontrib>Barbasheva, Anastasiya A</creatorcontrib><creatorcontrib>Ryzhikov, Ilya A</creatorcontrib><creatorcontrib>Rodionov, Ilya A</creatorcontrib><title>Integrated membrane-free thermal flow sensor for silicon-on-glass microfluidics</title><title>Lab on a chip</title><addtitle>Lab Chip</addtitle><description>Lab-on-a-chip (LOC) forms the basis of new-generation portable analytical systems. LOC allows the manipulation of ultralow flows of liquid reagents and multistep reactions on a microfluidic chip, which requires a robust and precise instrument to control the flow of liquids on a chip. However, commercially available flow meters appear to be a standalone option adding a significant dead volume of tubes for connection to the chip. Furthermore, most of them cannot be fabricated within the same technological cycle as microfluidic channels. Here, we report on a membrane-free microfluidic thermal flow sensor (MTFS) that can be integrated into a silicon-glass microfluidic chip with a microchannel topology. We propose a membrane-free design with thin-film thermo-resistive sensitive elements isolated from microfluidic channels and a 4′′ wafer silicon-glass fabrication route. It ensures MTFS compatibility with corrosive liquids, which is critically important for biological applications. MTFS design rules for the best sensitivity and measurement range are proposed. A method for automated thermo-resistive sensitive element calibration is described. The device parameters are experimentally tested for hundreds of hours with a reference Coriolis flow sensor demonstrating a relative flow error of less than 5% within the range of 2-30 μL min −1 along with a sub-second time response. Design, electronics, fabrication technology, and characterization method of an on-chip corrosion-resistant microfluidic thermal flow sensor for silicon lab-on-a-chip and POC devices.</description><subject>Control equipment</subject><subject>Flowmeters</subject><subject>Liquids</subject><subject>Membranes</subject><subject>Microchannels</subject><subject>Microfluidics</subject><subject>Parameter sensitivity</subject><subject>Reagents</subject><subject>Sensors</subject><subject>Silicon</subject><subject>Thin films</subject><subject>Time response</subject><subject>Topology</subject><subject>Tubes</subject><issn>1473-0197</issn><issn>1473-0189</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpdkU1LxDAQhoMorq5evCsFLyJUk6ZtmqPUr4WFvei5pJPpmiVt16RF_PdGd11BmCFh8vDO5B1Czhi9YZTLW80tUEpzBnvkiKWCx5QVcn93l2JCjr1fUcqyNC8OyYQLJgspxRFZzLoBl04NqKMW29qpDuPGIUbDG7pW2aix_UfksfO9i5qQ3lgDfReHWFrlfdQacH1jR6MN-BNy0Cjr8XR7Tsnr48NL-RzPF0-z8m4eA-diiHnaJKJQoDRCpliSAKcs10pldZ3KTCguQKPUmmkm0lBKsqJO6zovBAAozqfkaqO7dv37iH6oWuMBrQ3z96OvkoJlSSpDs4Be_kNX_ei6MF2gkozRIE4Ddb2hwme8d9hUa2da5T4rRqtvm6t7Pi9_bC4DfLGVHOsW9Q799TUA5xvAedi9_u2JfwFxtYIV</recordid><startdate>20230613</startdate><enddate>20230613</enddate><creator>Ryzhkov, Vitaly V</creator><creator>Echeistov, Vladimir V</creator><creator>Zverev, Aleksandr V</creator><creator>Baklykov, Dmitry A</creator><creator>Konstantinova, Tatyana</creator><creator>Lotkov, Evgeny S</creator><creator>Ryazantcev, Pavel G</creator><creator>Sh. Alibekov, Ruslan</creator><creator>Kuguk, Aleksey K</creator><creator>Aleksandrov, Andrey R</creator><creator>Krasko, Elisey S</creator><creator>Barbasheva, Anastasiya A</creator><creator>Ryzhikov, Ilya A</creator><creator>Rodionov, Ilya A</creator><general>Royal Society of Chemistry</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>FR3</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-1180-9887</orcidid><orcidid>https://orcid.org/0000-0002-2697-8803</orcidid><orcidid>https://orcid.org/0000-0002-8931-5142</orcidid><orcidid>https://orcid.org/0000-0001-7844-0039</orcidid></search><sort><creationdate>20230613</creationdate><title>Integrated membrane-free thermal flow sensor for silicon-on-glass microfluidics</title><author>Ryzhkov, Vitaly V ; Echeistov, Vladimir V ; Zverev, Aleksandr V ; Baklykov, Dmitry A ; Konstantinova, Tatyana ; Lotkov, Evgeny S ; Ryazantcev, Pavel G ; Sh. Alibekov, Ruslan ; Kuguk, Aleksey K ; Aleksandrov, Andrey R ; Krasko, Elisey S ; Barbasheva, Anastasiya A ; Ryzhikov, Ilya A ; Rodionov, Ilya A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c337t-34f278acadec5a122c3016daa5bb4957a37cde9dd1d174b49258b4bb687ccca33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Control equipment</topic><topic>Flowmeters</topic><topic>Liquids</topic><topic>Membranes</topic><topic>Microchannels</topic><topic>Microfluidics</topic><topic>Parameter sensitivity</topic><topic>Reagents</topic><topic>Sensors</topic><topic>Silicon</topic><topic>Thin films</topic><topic>Time response</topic><topic>Topology</topic><topic>Tubes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ryzhkov, Vitaly V</creatorcontrib><creatorcontrib>Echeistov, Vladimir V</creatorcontrib><creatorcontrib>Zverev, Aleksandr V</creatorcontrib><creatorcontrib>Baklykov, Dmitry A</creatorcontrib><creatorcontrib>Konstantinova, Tatyana</creatorcontrib><creatorcontrib>Lotkov, Evgeny S</creatorcontrib><creatorcontrib>Ryazantcev, Pavel G</creatorcontrib><creatorcontrib>Sh. Alibekov, Ruslan</creatorcontrib><creatorcontrib>Kuguk, Aleksey K</creatorcontrib><creatorcontrib>Aleksandrov, Andrey R</creatorcontrib><creatorcontrib>Krasko, Elisey S</creatorcontrib><creatorcontrib>Barbasheva, Anastasiya A</creatorcontrib><creatorcontrib>Ryzhikov, Ilya A</creatorcontrib><creatorcontrib>Rodionov, Ilya A</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Lab on a chip</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ryzhkov, Vitaly V</au><au>Echeistov, Vladimir V</au><au>Zverev, Aleksandr V</au><au>Baklykov, Dmitry A</au><au>Konstantinova, Tatyana</au><au>Lotkov, Evgeny S</au><au>Ryazantcev, Pavel G</au><au>Sh. Alibekov, Ruslan</au><au>Kuguk, Aleksey K</au><au>Aleksandrov, Andrey R</au><au>Krasko, Elisey S</au><au>Barbasheva, Anastasiya A</au><au>Ryzhikov, Ilya A</au><au>Rodionov, Ilya A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Integrated membrane-free thermal flow sensor for silicon-on-glass microfluidics</atitle><jtitle>Lab on a chip</jtitle><addtitle>Lab Chip</addtitle><date>2023-06-13</date><risdate>2023</risdate><volume>23</volume><issue>12</issue><spage>2789</spage><epage>2797</epage><pages>2789-2797</pages><issn>1473-0197</issn><eissn>1473-0189</eissn><abstract>Lab-on-a-chip (LOC) forms the basis of new-generation portable analytical systems. LOC allows the manipulation of ultralow flows of liquid reagents and multistep reactions on a microfluidic chip, which requires a robust and precise instrument to control the flow of liquids on a chip. However, commercially available flow meters appear to be a standalone option adding a significant dead volume of tubes for connection to the chip. Furthermore, most of them cannot be fabricated within the same technological cycle as microfluidic channels. Here, we report on a membrane-free microfluidic thermal flow sensor (MTFS) that can be integrated into a silicon-glass microfluidic chip with a microchannel topology. We propose a membrane-free design with thin-film thermo-resistive sensitive elements isolated from microfluidic channels and a 4′′ wafer silicon-glass fabrication route. It ensures MTFS compatibility with corrosive liquids, which is critically important for biological applications. MTFS design rules for the best sensitivity and measurement range are proposed. A method for automated thermo-resistive sensitive element calibration is described. The device parameters are experimentally tested for hundreds of hours with a reference Coriolis flow sensor demonstrating a relative flow error of less than 5% within the range of 2-30 μL min −1 along with a sub-second time response. Design, electronics, fabrication technology, and characterization method of an on-chip corrosion-resistant microfluidic thermal flow sensor for silicon lab-on-a-chip and POC devices.</abstract><cop>England</cop><pub>Royal Society of Chemistry</pub><pmid>37198997</pmid><doi>10.1039/d3lc00061c</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-1180-9887</orcidid><orcidid>https://orcid.org/0000-0002-2697-8803</orcidid><orcidid>https://orcid.org/0000-0002-8931-5142</orcidid><orcidid>https://orcid.org/0000-0001-7844-0039</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1473-0197
ispartof Lab on a chip, 2023-06, Vol.23 (12), p.2789-2797
issn 1473-0197
1473-0189
language eng
recordid cdi_proquest_miscellaneous_2815249337
source Royal Society Of Chemistry Journals 2008-; Alma/SFX Local Collection
subjects Control equipment
Flowmeters
Liquids
Membranes
Microchannels
Microfluidics
Parameter sensitivity
Reagents
Sensors
Silicon
Thin films
Time response
Topology
Tubes
title Integrated membrane-free thermal flow sensor for silicon-on-glass microfluidics
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T04%3A13%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Integrated%20membrane-free%20thermal%20flow%20sensor%20for%20silicon-on-glass%20microfluidics&rft.jtitle=Lab%20on%20a%20chip&rft.au=Ryzhkov,%20Vitaly%20V&rft.date=2023-06-13&rft.volume=23&rft.issue=12&rft.spage=2789&rft.epage=2797&rft.pages=2789-2797&rft.issn=1473-0197&rft.eissn=1473-0189&rft_id=info:doi/10.1039/d3lc00061c&rft_dat=%3Cproquest_pubme%3E2815249337%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2825109250&rft_id=info:pmid/37198997&rfr_iscdi=true