Integrated membrane-free thermal flow sensor for silicon-on-glass microfluidics
Lab-on-a-chip (LOC) forms the basis of new-generation portable analytical systems. LOC allows the manipulation of ultralow flows of liquid reagents and multistep reactions on a microfluidic chip, which requires a robust and precise instrument to control the flow of liquids on a chip. However, commer...
Gespeichert in:
Veröffentlicht in: | Lab on a chip 2023-06, Vol.23 (12), p.2789-2797 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2797 |
---|---|
container_issue | 12 |
container_start_page | 2789 |
container_title | Lab on a chip |
container_volume | 23 |
creator | Ryzhkov, Vitaly V Echeistov, Vladimir V Zverev, Aleksandr V Baklykov, Dmitry A Konstantinova, Tatyana Lotkov, Evgeny S Ryazantcev, Pavel G Sh. Alibekov, Ruslan Kuguk, Aleksey K Aleksandrov, Andrey R Krasko, Elisey S Barbasheva, Anastasiya A Ryzhikov, Ilya A Rodionov, Ilya A |
description | Lab-on-a-chip (LOC) forms the basis of new-generation portable analytical systems. LOC allows the manipulation of ultralow flows of liquid reagents and multistep reactions on a microfluidic chip, which requires a robust and precise instrument to control the flow of liquids on a chip. However, commercially available flow meters appear to be a standalone option adding a significant dead volume of tubes for connection to the chip. Furthermore, most of them cannot be fabricated within the same technological cycle as microfluidic channels. Here, we report on a membrane-free microfluidic thermal flow sensor (MTFS) that can be integrated into a silicon-glass microfluidic chip with a microchannel topology. We propose a membrane-free design with thin-film thermo-resistive sensitive elements isolated from microfluidic channels and a 4′′ wafer silicon-glass fabrication route. It ensures MTFS compatibility with corrosive liquids, which is critically important for biological applications. MTFS design rules for the best sensitivity and measurement range are proposed. A method for automated thermo-resistive sensitive element calibration is described. The device parameters are experimentally tested for hundreds of hours with a reference Coriolis flow sensor demonstrating a relative flow error of less than 5% within the range of 2-30 μL min
−1
along with a sub-second time response.
Design, electronics, fabrication technology, and characterization method of an on-chip corrosion-resistant microfluidic thermal flow sensor for silicon lab-on-a-chip and POC devices. |
doi_str_mv | 10.1039/d3lc00061c |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_2815249337</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2815249337</sourcerecordid><originalsourceid>FETCH-LOGICAL-c337t-34f278acadec5a122c3016daa5bb4957a37cde9dd1d174b49258b4bb687ccca33</originalsourceid><addsrcrecordid>eNpdkU1LxDAQhoMorq5evCsFLyJUk6ZtmqPUr4WFvei5pJPpmiVt16RF_PdGd11BmCFh8vDO5B1Czhi9YZTLW80tUEpzBnvkiKWCx5QVcn93l2JCjr1fUcqyNC8OyYQLJgspxRFZzLoBl04NqKMW29qpDuPGIUbDG7pW2aix_UfksfO9i5qQ3lgDfReHWFrlfdQacH1jR6MN-BNy0Cjr8XR7Tsnr48NL-RzPF0-z8m4eA-diiHnaJKJQoDRCpliSAKcs10pldZ3KTCguQKPUmmkm0lBKsqJO6zovBAAozqfkaqO7dv37iH6oWuMBrQ3z96OvkoJlSSpDs4Be_kNX_ei6MF2gkozRIE4Ddb2hwme8d9hUa2da5T4rRqtvm6t7Pi9_bC4DfLGVHOsW9Q799TUA5xvAedi9_u2JfwFxtYIV</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2825109250</pqid></control><display><type>article</type><title>Integrated membrane-free thermal flow sensor for silicon-on-glass microfluidics</title><source>Royal Society Of Chemistry Journals 2008-</source><source>Alma/SFX Local Collection</source><creator>Ryzhkov, Vitaly V ; Echeistov, Vladimir V ; Zverev, Aleksandr V ; Baklykov, Dmitry A ; Konstantinova, Tatyana ; Lotkov, Evgeny S ; Ryazantcev, Pavel G ; Sh. Alibekov, Ruslan ; Kuguk, Aleksey K ; Aleksandrov, Andrey R ; Krasko, Elisey S ; Barbasheva, Anastasiya A ; Ryzhikov, Ilya A ; Rodionov, Ilya A</creator><creatorcontrib>Ryzhkov, Vitaly V ; Echeistov, Vladimir V ; Zverev, Aleksandr V ; Baklykov, Dmitry A ; Konstantinova, Tatyana ; Lotkov, Evgeny S ; Ryazantcev, Pavel G ; Sh. Alibekov, Ruslan ; Kuguk, Aleksey K ; Aleksandrov, Andrey R ; Krasko, Elisey S ; Barbasheva, Anastasiya A ; Ryzhikov, Ilya A ; Rodionov, Ilya A</creatorcontrib><description>Lab-on-a-chip (LOC) forms the basis of new-generation portable analytical systems. LOC allows the manipulation of ultralow flows of liquid reagents and multistep reactions on a microfluidic chip, which requires a robust and precise instrument to control the flow of liquids on a chip. However, commercially available flow meters appear to be a standalone option adding a significant dead volume of tubes for connection to the chip. Furthermore, most of them cannot be fabricated within the same technological cycle as microfluidic channels. Here, we report on a membrane-free microfluidic thermal flow sensor (MTFS) that can be integrated into a silicon-glass microfluidic chip with a microchannel topology. We propose a membrane-free design with thin-film thermo-resistive sensitive elements isolated from microfluidic channels and a 4′′ wafer silicon-glass fabrication route. It ensures MTFS compatibility with corrosive liquids, which is critically important for biological applications. MTFS design rules for the best sensitivity and measurement range are proposed. A method for automated thermo-resistive sensitive element calibration is described. The device parameters are experimentally tested for hundreds of hours with a reference Coriolis flow sensor demonstrating a relative flow error of less than 5% within the range of 2-30 μL min
−1
along with a sub-second time response.
Design, electronics, fabrication technology, and characterization method of an on-chip corrosion-resistant microfluidic thermal flow sensor for silicon lab-on-a-chip and POC devices.</description><identifier>ISSN: 1473-0197</identifier><identifier>EISSN: 1473-0189</identifier><identifier>DOI: 10.1039/d3lc00061c</identifier><identifier>PMID: 37198997</identifier><language>eng</language><publisher>England: Royal Society of Chemistry</publisher><subject>Control equipment ; Flowmeters ; Liquids ; Membranes ; Microchannels ; Microfluidics ; Parameter sensitivity ; Reagents ; Sensors ; Silicon ; Thin films ; Time response ; Topology ; Tubes</subject><ispartof>Lab on a chip, 2023-06, Vol.23 (12), p.2789-2797</ispartof><rights>Copyright Royal Society of Chemistry 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c337t-34f278acadec5a122c3016daa5bb4957a37cde9dd1d174b49258b4bb687ccca33</citedby><cites>FETCH-LOGICAL-c337t-34f278acadec5a122c3016daa5bb4957a37cde9dd1d174b49258b4bb687ccca33</cites><orcidid>0000-0003-1180-9887 ; 0000-0002-2697-8803 ; 0000-0002-8931-5142 ; 0000-0001-7844-0039</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37198997$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ryzhkov, Vitaly V</creatorcontrib><creatorcontrib>Echeistov, Vladimir V</creatorcontrib><creatorcontrib>Zverev, Aleksandr V</creatorcontrib><creatorcontrib>Baklykov, Dmitry A</creatorcontrib><creatorcontrib>Konstantinova, Tatyana</creatorcontrib><creatorcontrib>Lotkov, Evgeny S</creatorcontrib><creatorcontrib>Ryazantcev, Pavel G</creatorcontrib><creatorcontrib>Sh. Alibekov, Ruslan</creatorcontrib><creatorcontrib>Kuguk, Aleksey K</creatorcontrib><creatorcontrib>Aleksandrov, Andrey R</creatorcontrib><creatorcontrib>Krasko, Elisey S</creatorcontrib><creatorcontrib>Barbasheva, Anastasiya A</creatorcontrib><creatorcontrib>Ryzhikov, Ilya A</creatorcontrib><creatorcontrib>Rodionov, Ilya A</creatorcontrib><title>Integrated membrane-free thermal flow sensor for silicon-on-glass microfluidics</title><title>Lab on a chip</title><addtitle>Lab Chip</addtitle><description>Lab-on-a-chip (LOC) forms the basis of new-generation portable analytical systems. LOC allows the manipulation of ultralow flows of liquid reagents and multistep reactions on a microfluidic chip, which requires a robust and precise instrument to control the flow of liquids on a chip. However, commercially available flow meters appear to be a standalone option adding a significant dead volume of tubes for connection to the chip. Furthermore, most of them cannot be fabricated within the same technological cycle as microfluidic channels. Here, we report on a membrane-free microfluidic thermal flow sensor (MTFS) that can be integrated into a silicon-glass microfluidic chip with a microchannel topology. We propose a membrane-free design with thin-film thermo-resistive sensitive elements isolated from microfluidic channels and a 4′′ wafer silicon-glass fabrication route. It ensures MTFS compatibility with corrosive liquids, which is critically important for biological applications. MTFS design rules for the best sensitivity and measurement range are proposed. A method for automated thermo-resistive sensitive element calibration is described. The device parameters are experimentally tested for hundreds of hours with a reference Coriolis flow sensor demonstrating a relative flow error of less than 5% within the range of 2-30 μL min
−1
along with a sub-second time response.
Design, electronics, fabrication technology, and characterization method of an on-chip corrosion-resistant microfluidic thermal flow sensor for silicon lab-on-a-chip and POC devices.</description><subject>Control equipment</subject><subject>Flowmeters</subject><subject>Liquids</subject><subject>Membranes</subject><subject>Microchannels</subject><subject>Microfluidics</subject><subject>Parameter sensitivity</subject><subject>Reagents</subject><subject>Sensors</subject><subject>Silicon</subject><subject>Thin films</subject><subject>Time response</subject><subject>Topology</subject><subject>Tubes</subject><issn>1473-0197</issn><issn>1473-0189</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpdkU1LxDAQhoMorq5evCsFLyJUk6ZtmqPUr4WFvei5pJPpmiVt16RF_PdGd11BmCFh8vDO5B1Czhi9YZTLW80tUEpzBnvkiKWCx5QVcn93l2JCjr1fUcqyNC8OyYQLJgspxRFZzLoBl04NqKMW29qpDuPGIUbDG7pW2aix_UfksfO9i5qQ3lgDfReHWFrlfdQacH1jR6MN-BNy0Cjr8XR7Tsnr48NL-RzPF0-z8m4eA-diiHnaJKJQoDRCpliSAKcs10pldZ3KTCguQKPUmmkm0lBKsqJO6zovBAAozqfkaqO7dv37iH6oWuMBrQ3z96OvkoJlSSpDs4Be_kNX_ei6MF2gkozRIE4Ddb2hwme8d9hUa2da5T4rRqtvm6t7Pi9_bC4DfLGVHOsW9Q799TUA5xvAedi9_u2JfwFxtYIV</recordid><startdate>20230613</startdate><enddate>20230613</enddate><creator>Ryzhkov, Vitaly V</creator><creator>Echeistov, Vladimir V</creator><creator>Zverev, Aleksandr V</creator><creator>Baklykov, Dmitry A</creator><creator>Konstantinova, Tatyana</creator><creator>Lotkov, Evgeny S</creator><creator>Ryazantcev, Pavel G</creator><creator>Sh. Alibekov, Ruslan</creator><creator>Kuguk, Aleksey K</creator><creator>Aleksandrov, Andrey R</creator><creator>Krasko, Elisey S</creator><creator>Barbasheva, Anastasiya A</creator><creator>Ryzhikov, Ilya A</creator><creator>Rodionov, Ilya A</creator><general>Royal Society of Chemistry</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>FR3</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-1180-9887</orcidid><orcidid>https://orcid.org/0000-0002-2697-8803</orcidid><orcidid>https://orcid.org/0000-0002-8931-5142</orcidid><orcidid>https://orcid.org/0000-0001-7844-0039</orcidid></search><sort><creationdate>20230613</creationdate><title>Integrated membrane-free thermal flow sensor for silicon-on-glass microfluidics</title><author>Ryzhkov, Vitaly V ; Echeistov, Vladimir V ; Zverev, Aleksandr V ; Baklykov, Dmitry A ; Konstantinova, Tatyana ; Lotkov, Evgeny S ; Ryazantcev, Pavel G ; Sh. Alibekov, Ruslan ; Kuguk, Aleksey K ; Aleksandrov, Andrey R ; Krasko, Elisey S ; Barbasheva, Anastasiya A ; Ryzhikov, Ilya A ; Rodionov, Ilya A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c337t-34f278acadec5a122c3016daa5bb4957a37cde9dd1d174b49258b4bb687ccca33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Control equipment</topic><topic>Flowmeters</topic><topic>Liquids</topic><topic>Membranes</topic><topic>Microchannels</topic><topic>Microfluidics</topic><topic>Parameter sensitivity</topic><topic>Reagents</topic><topic>Sensors</topic><topic>Silicon</topic><topic>Thin films</topic><topic>Time response</topic><topic>Topology</topic><topic>Tubes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ryzhkov, Vitaly V</creatorcontrib><creatorcontrib>Echeistov, Vladimir V</creatorcontrib><creatorcontrib>Zverev, Aleksandr V</creatorcontrib><creatorcontrib>Baklykov, Dmitry A</creatorcontrib><creatorcontrib>Konstantinova, Tatyana</creatorcontrib><creatorcontrib>Lotkov, Evgeny S</creatorcontrib><creatorcontrib>Ryazantcev, Pavel G</creatorcontrib><creatorcontrib>Sh. Alibekov, Ruslan</creatorcontrib><creatorcontrib>Kuguk, Aleksey K</creatorcontrib><creatorcontrib>Aleksandrov, Andrey R</creatorcontrib><creatorcontrib>Krasko, Elisey S</creatorcontrib><creatorcontrib>Barbasheva, Anastasiya A</creatorcontrib><creatorcontrib>Ryzhikov, Ilya A</creatorcontrib><creatorcontrib>Rodionov, Ilya A</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Lab on a chip</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ryzhkov, Vitaly V</au><au>Echeistov, Vladimir V</au><au>Zverev, Aleksandr V</au><au>Baklykov, Dmitry A</au><au>Konstantinova, Tatyana</au><au>Lotkov, Evgeny S</au><au>Ryazantcev, Pavel G</au><au>Sh. Alibekov, Ruslan</au><au>Kuguk, Aleksey K</au><au>Aleksandrov, Andrey R</au><au>Krasko, Elisey S</au><au>Barbasheva, Anastasiya A</au><au>Ryzhikov, Ilya A</au><au>Rodionov, Ilya A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Integrated membrane-free thermal flow sensor for silicon-on-glass microfluidics</atitle><jtitle>Lab on a chip</jtitle><addtitle>Lab Chip</addtitle><date>2023-06-13</date><risdate>2023</risdate><volume>23</volume><issue>12</issue><spage>2789</spage><epage>2797</epage><pages>2789-2797</pages><issn>1473-0197</issn><eissn>1473-0189</eissn><abstract>Lab-on-a-chip (LOC) forms the basis of new-generation portable analytical systems. LOC allows the manipulation of ultralow flows of liquid reagents and multistep reactions on a microfluidic chip, which requires a robust and precise instrument to control the flow of liquids on a chip. However, commercially available flow meters appear to be a standalone option adding a significant dead volume of tubes for connection to the chip. Furthermore, most of them cannot be fabricated within the same technological cycle as microfluidic channels. Here, we report on a membrane-free microfluidic thermal flow sensor (MTFS) that can be integrated into a silicon-glass microfluidic chip with a microchannel topology. We propose a membrane-free design with thin-film thermo-resistive sensitive elements isolated from microfluidic channels and a 4′′ wafer silicon-glass fabrication route. It ensures MTFS compatibility with corrosive liquids, which is critically important for biological applications. MTFS design rules for the best sensitivity and measurement range are proposed. A method for automated thermo-resistive sensitive element calibration is described. The device parameters are experimentally tested for hundreds of hours with a reference Coriolis flow sensor demonstrating a relative flow error of less than 5% within the range of 2-30 μL min
−1
along with a sub-second time response.
Design, electronics, fabrication technology, and characterization method of an on-chip corrosion-resistant microfluidic thermal flow sensor for silicon lab-on-a-chip and POC devices.</abstract><cop>England</cop><pub>Royal Society of Chemistry</pub><pmid>37198997</pmid><doi>10.1039/d3lc00061c</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-1180-9887</orcidid><orcidid>https://orcid.org/0000-0002-2697-8803</orcidid><orcidid>https://orcid.org/0000-0002-8931-5142</orcidid><orcidid>https://orcid.org/0000-0001-7844-0039</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1473-0197 |
ispartof | Lab on a chip, 2023-06, Vol.23 (12), p.2789-2797 |
issn | 1473-0197 1473-0189 |
language | eng |
recordid | cdi_proquest_miscellaneous_2815249337 |
source | Royal Society Of Chemistry Journals 2008-; Alma/SFX Local Collection |
subjects | Control equipment Flowmeters Liquids Membranes Microchannels Microfluidics Parameter sensitivity Reagents Sensors Silicon Thin films Time response Topology Tubes |
title | Integrated membrane-free thermal flow sensor for silicon-on-glass microfluidics |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T04%3A13%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Integrated%20membrane-free%20thermal%20flow%20sensor%20for%20silicon-on-glass%20microfluidics&rft.jtitle=Lab%20on%20a%20chip&rft.au=Ryzhkov,%20Vitaly%20V&rft.date=2023-06-13&rft.volume=23&rft.issue=12&rft.spage=2789&rft.epage=2797&rft.pages=2789-2797&rft.issn=1473-0197&rft.eissn=1473-0189&rft_id=info:doi/10.1039/d3lc00061c&rft_dat=%3Cproquest_pubme%3E2815249337%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2825109250&rft_id=info:pmid/37198997&rfr_iscdi=true |