Tunable distribution of silica nanoparticles in water-borne coatings via strawberry supracolloidal dispersions
[Display omitted] Water-borne coatings are rapidly expanding as sustainable alternatives to organic solvent-borne systems. Inorganic colloids are often added to aqueous polymer dispersions to enhance the performance of water-borne coatings. However, these bimodal dispersions have many interfaces whi...
Gespeichert in:
Veröffentlicht in: | Journal of colloid and interface science 2023-09, Vol.646, p.185-197 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | [Display omitted]
Water-borne coatings are rapidly expanding as sustainable alternatives to organic solvent-borne systems. Inorganic colloids are often added to aqueous polymer dispersions to enhance the performance of water-borne coatings. However, these bimodal dispersions have many interfaces which can result in unstable colloids and undesirable phase separation. The covalent bonding between individual colloids, on a polymer-inorganic core-corona supracolloidal assembly, could reduce or suppress instability and phase separation during drying of coatings, advancing its mechanical and optical properties.
Aqueous polymer-silica supracolloids with a core-corona strawberry configuration were used to precisely control the silica nanoparticles distribution within the coating. The interaction between polymer and silica particles was fine-tuned to obtain covalently bound or physically adsorbed supracolloids. Coatings were prepared by drying the supracolloidal dispersions at room temperature, and their morphology and mechanical properties were interconnected.
Covalently bound supracolloids provided transparent coatings with a homogeneous 3D percolating silica nanonetwork. Supracolloids having physical adsorption only, resulted in coatings with a stratified silica layer at interfaces. The well-arranged silica nanonetworks strongly improve the storage moduli and water resistance of the coatings. These supracolloidal dispersions offer a new paradigm for preparing water-borne coatings with enhanced mechanical properties and other functionalities, like structural color. |
---|---|
ISSN: | 0021-9797 1095-7103 |
DOI: | 10.1016/j.jcis.2023.04.154 |