Chitosan based sorafenib tosylate loaded magnetic nanoparticles: Formulation and in-vitro characterization
Biocompatible magnetic nanoparticles are used for various biomedical applications. This study reported the development of nanoparticles with magnetic properties by embedding magnetite particles in the drug-loaded, crosslinked matrix of chitosan. Sorafenib tosylate-loaded magnetic nanoparticles were...
Gespeichert in:
Veröffentlicht in: | International journal of biological macromolecules 2023-07, Vol.242 (Pt 2), p.124919-124919, Article 124919 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Biocompatible magnetic nanoparticles are used for various biomedical applications. This study reported the development of nanoparticles with magnetic properties by embedding magnetite particles in the drug-loaded, crosslinked matrix of chitosan. Sorafenib tosylate-loaded magnetic nanoparticles were prepared by a modified ionic-gelation method. Particle size, zeta potential, polydispersity index, and entrapment efficiency of nanoparticles were in the range of 95.6 ± 3.4 nm to 440.9 ± 7.3 nm, 12.8 ± 0.8 mV to 27.3 ± 1.1 mV, 0.289 ± 0.011 to 0.571 ± 0.011, and 54.36 ± 1.26 % to 79.67 ± 1.40 %, respectively. The XRD spectrum of formulation CMP-5 confirmed the amorphous nature of the loaded drug in nanoparticles. TEM image confirmed the spherical shape of nanoparticles. Atomic force microscopic image of formulation CMP-5 indicated a mean surface roughness of 10.3597 nm. The magnetization saturation of formulation CMP-5 was 24.74 emu/g. Electron paramagnetic resonance spectroscopy revealed that formulation CMP-5's g-Lande's factor was 4.27, which was extremely near to the 4.30 (usual for Fe3+ ions). Residual paramagnetic Fe3+ ions may be responsible for paramagnetic origin. The data suggests superparamagnetic nature of particles. Formulations released 28.66 ± 1.22 % to 53.24 ± 1.95 % and 70.13 ± 1.72 % to 92.48 ± 1.32 % of the loaded drug after 24 h in pH 6.8 and pH 1.2, respectively. The IC50 value of formulation CMP-5 was 54.75 μg/mL in HepG2 (human hepatocellular carcinoma cell lines).
•Sorafenib tosylate-loaded magnetic nanoparticles are prepare and optimize successfully by a modified ionic gelation method.•Nanoparticles were spherical (95.6 nm to 401.1 nm) with high drug encapsulation efficiency (54.36% to 79.67%).•In HepG2 cell lines, the IC50 value of optimized formulation was recorded to be 54.75 μg/mL.•The magnetization saturation for optimized formulation was 24.74 emu/g.•The g factor for optimized formulation was 4.27 suggesting superparamagnetic nature of the particles. |
---|---|
ISSN: | 0141-8130 1879-0003 |
DOI: | 10.1016/j.ijbiomac.2023.124919 |