Strategy for cost-effective BMPs of non-point source pollution in the small agricultural watershed of Poyang Lake: A case study of the Zhuxi River

In recent years, Poyang Lake has been affected by severe agricultural non-point source (NPS) pollution, a global water pollution problem. The most recognized and effective control measure for agricultural NPS pollution is the strategic selection and placement of best management practices (BMPs) for...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemosphere (Oxford) 2023-08, Vol.333, p.138949-138949, Article 138949
Hauptverfasser: Liu, Wei, Zhang, Lei, Wu, Huoliang, Wang, Yinfeng, Zhang, Yalan, Xu, Jinying, Wei, Dongyang, Zhang, Ru, Yu, Ying, Wu, Daishe, Xie, Xianchuan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In recent years, Poyang Lake has been affected by severe agricultural non-point source (NPS) pollution, a global water pollution problem. The most recognized and effective control measure for agricultural NPS pollution is the strategic selection and placement of best management practices (BMPs) for critical source areas (CSAs). The present study employed the Soil and Water Assessment Tool (SWAT) model to identify CSAs and evaluate the effectiveness of different BMPs in reducing agricultural NPS pollutants in the typical sub-watersheds of the Poyang Lake watershed. The model performed well and satisfactorily in simulating the streamflow and sediment yield at the outlet of the Zhuxi River watershed. The results indicated that urbanization-oriented development strategies and the Grain for Green program (returning the grain plots to forestry) had certain effects on the land-use structure. The proportion of cropland in the study area decreased from 61.45% (2010) to 7.48% (2018) in response to the Grain for Green program, which was mainly converted to forest land (58.7%) and settlements (36.8%). Land-use type changes alter the occurrence of runoff and sediment, which further affect the nitrogen (N) and phosphorus (P) loads since sediment load intensity is a key factor affecting the P load intensity. Vegetation buffer strips (VBSs) proved the most effective BMPs for NPS pollutant reduction, and the cost of 5-m VBSs proved the lowest. The effectiveness of each BMP in reducing N/P load ranked as follows: VBS > grassed river channels (GRC) > 20% fertilizer reduction (FR20) > no-tillage (NT) > 10% fertilizer reduction (FR10). All combined BMPs had higher N and P removal efficiencies than the individual measures. We recommend combining FR20 and VBS-5m or NT and VBS-5m, which could achieve nearly 60% pollutant removal. Depending on the site conditions, the choice between FR20+VBS and NT + VBS is flexible for targeted implementation. Our findings may contribute to the effective implementation of BMPs in the Poyang Lake watershed and provide theoretical support and practical guidance for agricultural authorities to perform and direct agricultural NPS pollution prevention and control. [Display omitted] •A combined environmental and economic pollutants control method was identified.•The identification scheme of critical sub-watershed can serve as a reference.•The land-use type changes affect the N (P) loads.•The environmental and economic benefits of engineered measures ar
ISSN:0045-6535
1879-1298
DOI:10.1016/j.chemosphere.2023.138949