Development of a Single-Molecule Nanobalance Ratiometric Electrochemical DNA Biosensor Using a Triblock Poly-Adenine Probe

The development of electrochemical DNA biosensors has been limited by their reliability and reproducibility due to many interfering factors such as electrode properties, DNA surface densities, and complex biological samples. In this work, we developed a nanobalance polyA hairpin probe (polyA-HP), wh...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Analytical chemistry (Washington) 2023-06, Vol.95 (23), p.8816-8824
Hauptverfasser: Li, Lanying, Guo, Ruiyan, Wang, Lele, Tao, Qing, Luo, Ming, Ding, Min, Li, Yan, Yang, Liu, Chen, Lizhen, Yan, Juan, Cao, Chengming, Chang, Jinxue, Chen, Ying, Gong, Feiyan, Wen, Yanli, Liu, Gang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The development of electrochemical DNA biosensors has been limited by their reliability and reproducibility due to many interfering factors such as electrode properties, DNA surface densities, and complex biological samples. In this work, we developed a nanobalance polyA hairpin probe (polyA-HP), which was effectively assembled onto the gold electrode surface through the affinity between the central polyA fragment and the Au surface. One flanking probe of the polyA-HP captured the target sequence together with a MB-labeled signal probe, and the other flanking probe captured a reference probe simultaneously. The MB signal related to the amount of target was normalized by the reference Fc signal; thus, the signal-to-noise (S/N) was as high as 2000, and the reproducibility was remarkably improved to 2.77%, even facing deliberately changed experiment conditions. By designing a hairpin structure at the terminal of the polyA-HP, the selectivity and specificity were dramatically improved for the analysis of mismatched sequences. The analysis performance of biological samples was dramatically improved after normalization, which is critical for its practicability. Our novel biosensor is a universal single-molecule platform for ratiometric biosensors with excellent performance in real samples, indicating great potential for next-generation high-precision electrochemical sensors.
ISSN:0003-2700
1520-6882
DOI:10.1021/acs.analchem.2c05750