Improved ventilation efficiency due to continuous gas flow compared to decelerating gas flow in mechanical ventilation: results of a porcine trial
In pressure-controlled ventilation (PCV), a decelerating gas flow pattern occurs during inspiration and expiration. In contrast, flow-controlled ventilation (FCV) guarantees a continuous gas flow throughout the entire ventilation cycle where the inspiration and expiration phases are simply performed...
Gespeichert in:
Veröffentlicht in: | American journal of physiology. Lung cellular and molecular physiology 2023-06, Vol.324 (6), p.L879-L885 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In pressure-controlled ventilation (PCV), a decelerating gas flow pattern occurs during inspiration and expiration. In contrast, flow-controlled ventilation (FCV) guarantees a continuous gas flow throughout the entire ventilation cycle where the inspiration and expiration phases are simply performed by a change of gas flow direction. The aim of this trial was to highlight the effects of different flow patterns on respiratory variables and gas exchange. Anesthetized pigs were ventilated with either FCV or PCV for 1 h and thereafter for 30 min each in a crossover comparison. Both ventilation modes were set with a peak pressure of 15 cmH
O, positive end-expiratory pressure of 5 cmH
O, a respiratory rate of 20/min, and a fraction of inspired oxygen at 0.3. All respiratory variables were collected every 15 min. Tidal volume and respiratory minute volume were significantly lower in FCV (
= 5) compared with PCV (
= 5) animals [4.6 vs. 6.6, MD -2.0 (95% CI -2.6 to -1.4) mL/kg;
< 0.001 and 7.3 vs. 9.5, MD -2.2 (95% CI -3.3 to -1.0) L/min;
= 0.006]. Notwithstanding these differences, CO
-removal as well as oxygenation was not inferior in FCV compared with PCV. Mechanical ventilation with identical ventilator settings resulted in lower tidal volumes and consecutive minute volume in FCV compared with PCV. This finding can be explained physically by the continuous gas flow pattern in FCV that necessitates a lower alveolar pressure amplitude. Interestingly, gas exchange was comparable in both groups, which is suggestive of improved ventilation efficiency at a continuous gas flow pattern.
This study examined the effects of a continuous (flow-controlled ventilation, FCV) vs. decelerating (pressure-controlled ventilation, PCV) gas flow pattern during mechanical ventilation. It was shown that FCV necessitates a lower alveolar pressure amplitude leading to reduced applied tidal volumes and consequently minute volume. Notwithstanding these differences, CO
-removal as well as oxygenation was not inferior in FCV compared with PCV, which is suggestive of improved gas exchange efficiency at a continuous gas flow pattern. |
---|---|
ISSN: | 1040-0605 1522-1504 |
DOI: | 10.1152/ajplung.00235.2022 |